Chapter 2

Chapter 2 Prerequisite Skills

Chapter 2 Prerequisite Skills
124
a) $2 8 \longdiv { 3 4 7 6 }$

28
67
$\underline{56}$
116
$\underline{112}$
4
b) $3 7 \longdiv { 1 6 1 }$

161 R16
37
227
222
37
16
c) $1 7 \longdiv { 1 4 7 }$ 147 R9 $\underline{17}$ 80 $\underline{68}$ 128 $\underline{119}$ 9 147 R9

358
d) $1 9 \longdiv { 6 8 1 5 } \quad 3 5 8 \mathrm { R } 1 3$
$\underline{57}$24

28
\qquad

$$
53
$$

124 R4

161 Ri

$08 \quad 147 \mathrm{R} 9$
80$\underline{119}$

111
$\underline{95}$ 165 13

Polynomial Equations and Inequalities

Question 1 Page 82

Chapter 2 Prerequisite Skills

Question 2 Page 82

a) $P(-1)=(-1)^{3}-5(-1)^{2}+7(-1)-9$

$$
=-1-5-7-9
$$

$$
=-22
$$

b) $P(3)=(3)^{3}-5(3)^{2}+7(3)-9$

$$
\begin{aligned}
& =27-45+21-9 \\
& =-6
\end{aligned}
$$

c) $P(-2)=(-2)^{3}-5(-2)^{2}+7(-2)-9$

$$
\begin{aligned}
& =-8-20-14-9 \\
& =-51
\end{aligned}
$$

d) $P\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{3}-5\left(-\frac{1}{2}\right)^{2}+7\left(-\frac{1}{2}\right)-9$

$$
\begin{aligned}
& =-\frac{1}{8}-\frac{5}{4}-\frac{7}{2}-9 \\
& =-13.875
\end{aligned}
$$

e) $P\left(\frac{2}{3}\right)=\left(\frac{2}{3}\right)^{3}-5\left(\frac{2}{3}\right)^{2}+7\left(\frac{2}{3}\right)-9$

$$
\begin{aligned}
& =\frac{8}{27}-\frac{20}{9}+\frac{14}{3}-9 \\
& =-\frac{169}{27}
\end{aligned}
$$

Chapter 2 Prerequisite Skills

Question 3 Page 82

a) $\left(x^{3}+3 x^{2}-x+1\right)(x-2)+5=x^{4}-2 x^{3}+3 x^{3}-6 x^{2}-x^{2}+2 x+x-2+5$ $=x^{4}+x^{3}-7 x^{2}+3 x+3$
b) $\left(2 x^{3}-4 x^{2}+x-3\right)(x+4)-7=2 x^{4}+8 x^{3}-4 x^{3}-16 x^{2}+x^{2}+4 x-3 x-12-7$ $=2 x^{4}+4 x^{3}-15 x^{2}+x-19$
c) $\left(x^{3}+4 x^{2}-x+8\right)(3 x-1)+6=3 x^{4}-x^{3}+12 x^{3}-4 x^{2}-3 x^{2}+x+24 x-8+6$ $=3 x^{4}+11 x^{3}-7 x^{2}+25 x-2$
d) $(x-\sqrt{2})(x+\sqrt{2})=x^{2}+\sqrt{2} x-\sqrt{2} x-2$

$$
=x^{2}-2
$$

e) $(x-3 \sqrt{5})(x+3 \sqrt{5})=x^{2}+3 \sqrt{5} x-3 \sqrt{5} x-45$

$$
=x^{2}-45
$$

f) $(x-1+\sqrt{3})(x-1-\sqrt{3})=x^{2}-x-\sqrt{3} x-x+1+\sqrt{3}+\sqrt{3} x-\sqrt{3}-3$

$$
=x^{2}-2 x-2
$$

Chapter 2 Prerequisite Skills

Question 4 Page 82

a) $(x-2)(x+2)$
b) $(5 m-7)(5 m+7)$
c) $(4 y-3)(4 y+3)$
d) $3\left(4 c^{2}-9\right)=3(2 c-3)(2 c+3)$
e) $2\left(x^{4}-16\right)=2\left(x^{2}-4\right)\left(x^{2}+4\right)$

$$
=2(x-2)(x+2)\left(x^{2}+4\right)
$$

f) $3\left(n^{4}-4\right)=3\left(n^{2}-2\right)\left(n^{2}+2\right)$

Chapter 2 Prerequisite Skills

Question 5 Page 82

a) $(x+3)(x+2)$
b) $(x-4)(x-5)$
c) $(b+7)(b-2)$
d) $(2 x+3)(x-5)$
e) $(2 x-3)^{2}$
f) $(2 a-1)(3 a-2)$
g) $(3 m-4)^{2}$
h) $(m-3)(3 m-1)$

Chapter 2 Prerequisite Skills

Question 6 Page 82

a) $(x-5)(x+3)=0$
$x=-3$ or $x=5$
b) $(x+1)(4 x-3)=0$
$x=-1$ or $x=\frac{3}{4}$
c) $4\left(4 x^{2}-9\right)=0$
$4(2 x+3)(2 x-3)=0$
$x=-\frac{3}{2}$ or $x=\frac{3}{2}$
d) $9 x^{2}-48 x+15=0$
$3\left(3 x^{2}-16 x+5\right)=0$
$3(3 x-1)(x-5)=0$
$x=\frac{1}{3}$ or $x=5$
e) $8 x^{2}+12 x-20=0$
$4\left(2 x^{2}+3 x-5\right)=0$
$4(2 x+5)(x-1)=0$
$x=-\frac{5}{2}$ or $x=1$
f) $21 x^{2}-10 x+1=0$ $(7 x-1)(3 x-1)=0$ $x=\frac{1}{7}$ or $x=\frac{1}{3}$
a) $x=\frac{-6 \pm \sqrt{6^{2}-4(5)(-1)}}{2(5)}$

$$
=\frac{-6 \pm \sqrt{36+20}}{10}
$$

$$
=\frac{-6 \pm \sqrt{56}}{10}
$$

$$
=\frac{-3 \pm \sqrt{14}}{5}
$$

$$
x \doteq-1.3 \text { or } x \doteq 0.1
$$

b) $x=\frac{7 \pm \sqrt{(-7)^{2}-4(2)(4)}}{2(2)}$

$$
=\frac{7 \pm \sqrt{49-32}}{4}
$$

$$
=\frac{7 \pm \sqrt{17}}{4}
$$

$$
x \doteq 0.7 \text { or } x \doteq 2.8
$$

c) $x=\frac{-2 \pm \sqrt{2^{2}-4(4)(-3)}}{2(4)}$

$$
\begin{aligned}
& =\frac{-2 \pm \sqrt{4+48}}{8} \\
& =\frac{-2 \pm \sqrt{52}}{8} \\
& =\frac{-1 \pm \sqrt{13}}{4} \\
x & \doteq-1.2 \text { or } x \doteq 0.7
\end{aligned}
$$

d) $x=\frac{7 \pm \sqrt{(-7)^{2}-4(6)(-20)}}{2(6)}$

$$
=\frac{7 \pm \sqrt{49+480}}{12}
$$

$$
=\frac{7 \pm \sqrt{529}}{12}
$$

$$
=\frac{7 \pm 23}{12}
$$

$$
x \doteq-1.3 \text { or } x=2.5
$$

Chapter 2 Prerequisite Skills

Question 8 Page 82

a) $y=a(x+4)(x-1)$
$2=a[(-1)+4][(-1)-1]$
$2=-6 a$
$a=-\frac{1}{3}$
$y=-\frac{1}{3}(x+4)(x-1)$
b) $y=a x(x-3)$
$6=a(2)(2-3)$
$6=-2 a$
$a=-3$
$y=-3 x(x-3)$
c) $y=a(x+3)(x-4)$
$24=a(3+3)(3-4)$
$24=-6 a$
$a=-4$
$y=-4(x+3)(x-4)$
d) $y=a(x+1)(x-5)$
$-10=a(4+1)(4-5)$
$-10=-5 a$
$a=2$
$y=2(x+1)(x-5)$
e) $y=a(2 x+1)(2 x-3)$
$9=a(2(0)+1)(2(0)-3)$
$9=-3 a$
$a=-3$
$y=-3(2 x+1)(2 x-3)$

Chapter 2 Prerequisite Skills

Question 9 Page 83

a) i) x-intercepts are -4 and 1
ii) above the x-axis: $x<-4$ and $x>1$
below the x-axis: $-4<x<1$
b) i) x-intercepts are $-1,1$ and 2
ii) above the x-axis: $-1<x<1$ and $x>2$ below the x-axis: $x<-1$ and $1<x<2$
c) i) x-intercepts are $-2,-1,1$, and 2
ii) above the x-axis: $-2<x<-1$ and $1<x<2$ below the x-axis: $x<-2$ and $-1<x<1$ and $x>2$

Chapter 2 Section 1

Chapter 2 Section 1

a)

- NewProb Done	
ropFrac $\left(\frac{x^{3}+3 x^{2}-2 x+}{x+1}\right)$	
9. $+x^{2}+2 \cdot \cdot x-4$.	

The Remainder Theorem

Question 1 Page 91

$$
\frac{x^{3}+3 x^{2}-2 x+5}{x+1}=x^{2}+2 x-4+\frac{9}{x+1}
$$

b) $x+1 \neq 0$

$$
x \neq-1
$$

c) $x^{3}+3 x^{2}-2 x+5=(x+1)\left(x^{2}+2 x-4\right)+9$
d) $(x+1)\left(x^{2}+2 x-4\right)+9=x^{3}+2 x^{2}-4 x+x^{2}+2 x-4+9$

$$
=x^{3}+3 x^{2}-2 x+5
$$

Chapter 2 Section 1

Question 2 Page 91
a)

$$
\frac{3 x^{4}-4 x^{3}-6 x^{2}+17 x-8}{3 x-4}=x^{3}-2 x+3+\frac{4}{3 x-4}
$$

b) $3 x-4 \neq 0$

$$
x \neq \frac{4}{3}
$$

c) $3 x^{4}-4 x^{3}-6 x^{2}+17 x-8=(3 x-4)\left(x^{3}-2 x+3\right)+4$
d) $(3 x-4)\left(x^{3}-2 x+3\right)+4=3 x^{4}-6 x^{2}+9 x-4 x^{3}+8 x-12+4$ $=3 x^{4}-4 x^{3}-6 x^{2}+17 x-8$

Chapter 2 Section 1

Question 3 Page 91

a)

NewProb propFra	Done $\begin{aligned} & \left(\frac{x^{3}+7 \cdot x^{2}-3 \cdot x+}{x+2}\right. \\ & \frac{30}{x+2}+x^{2}+5 \cdot x-13 \end{aligned}$
$\frac{C\left(<x^{\wedge} 3+\right.}{\text { MAIN }}$	$\begin{aligned} & \left.\left.7 x^{\wedge} 2-3 x+4\right) /(x+2)\right) \\ & \text { Bind EXACT FUNC } 2 / 30 \end{aligned}$

$$
\frac{x^{3}+7 x^{2}-3 x+4}{x+2}=x^{2}+5 x-13+\frac{30}{x+2}, x \neq-2
$$

b)

$$
\frac{6 x^{3}+x^{2}-14 x-6}{3 x+2}=2 x^{2}-x-4+\frac{2}{3 x+2}, x \neq-\frac{2}{3}
$$

c)

$$
\frac{10 x^{3}-9 x^{2}-8 x+11}{5 x-2}=2 x^{2}-x-2+\frac{7}{5 x-2}, x \neq \frac{2}{5}
$$

d)

$\frac{-4 x^{4}+11 x-7}{x-3}=-4 x^{3}-12 x^{2}-36 x-97-\frac{298}{x-3}, x \neq 3$
e)

$$
\frac{6 x^{3}+x^{2}+7 x+3}{3 x+2}=2 x^{2}-x+3-\frac{3}{3 x+2}, x \neq-\frac{2}{3}
$$

f)

F6.	
- PropFrac $\left(\frac{8 \cdot x^{3}+4 \cdot x^{2}-31}{2 \cdot x-3}\right)$	

$$
\frac{8 x^{3}+4 x^{2}-31}{2 x-3}=4 x^{2}+8 x+12+\frac{5}{2 x-3}, x \neq \frac{3}{2}
$$

g)

$\frac{8 x^{3}+6 x^{2}-6}{4 x-3}=2 x^{2}+3 x+\frac{9}{4}+\frac{3}{4(4 x-3)}, x \neq \frac{3}{4}$

Chapter 2 Section 1

Question 4 Page 91

a) $(2 x-3)(3 x+4)+R=6 x^{2}-x+15$
$6 x^{2}+8 x-9 x-12+R=6 x^{2}-x+15$

$$
R=6 x^{2}-6 x^{2}-x-8 x+9 x+15+12
$$

$$
R=27
$$

b) $\quad(x+2)\left(x^{2}-3 x+4\right)+R=x^{3}-x^{2}-2 x-1$
c) $\quad(x-4)\left(2 x^{2}+3 x-1\right)+R=2 x^{3}-5 x^{2}-13 x+2$
$2 x^{3}+3 x^{2}-x-8 x^{2}-12 x+4+R=2 x^{3}-5 x^{2}-13 x+2$
$R=2 x^{3}-2 x^{3}-5 x^{2}-3 x^{2}+8 x^{2}-13 x+x+12 x+2-4$ $R=-2$

Chapter 2 Section 1

Question 5 Page 91

$2 x^{3}+17 x^{2}+38 x+15=(x+5)(x+3)(2 x+1)$
The possible dimensions of the box are $(x+5) \mathrm{cm}$ by $(x+3) \mathrm{cm}$ by $(2 x+1) \mathrm{cm}$.

Chapter 2 Section 1

Question 6 Page 91

$9 x^{3}+24 x^{2}-44 x+16=(x+4)(3 x-2)^{2}$
The possible dimensions of the box are $(3 x-2) \mathrm{cm}$ by $(3 x-2) \mathrm{cm}$ by $(x+4) \mathrm{cm}$.

$$
\begin{aligned}
& x^{3}-3 x^{2}+4 x+2 x^{2}-6 x+8+R=x^{3}-x^{2}-2 x-1 \\
& R=x^{3}-x^{3}-x^{2}+3 x^{2}-2 x^{2}-2 x-4 x+6 x-1-8 \\
& R=-9
\end{aligned}
$$

Chapter 2 Section 1

a) $P(-1)=2(-1)^{3}+7(-1)^{2}-8(-1)+3$

$$
=-2+7+8+3
$$

$$
=16
$$

b) $\quad P(2)=2(2)^{3}+7(2)^{2}-8(2)+3$

$$
=16+28-16+3
$$

$$
=31
$$

c) $P(-3)=2(-3)^{3}+7(-3)^{2}-8(-3)+3$

$$
\begin{aligned}
& =-54+63+24+3 \\
& =36
\end{aligned}
$$

d) $P(4)=2(4)^{3}+7(4)^{2}-8(4)+3$

$$
\begin{aligned}
& =128+112-32+3 \\
& =211
\end{aligned}
$$

e) $P(1)=2(1)^{3}+7(1)^{2}-8(1)+3$

$$
\begin{aligned}
& =2+7-8+3 \\
& =4
\end{aligned}
$$

Chapter 2 Section 1

Question 8 Page 91

a) $P(-2)=(-2)^{3}+3(-2)^{2}-5(-2)+2$

$$
\begin{aligned}
& =-8+12+10+2 \\
& =16
\end{aligned}
$$

b) $P(-2)=2(-2)^{3}-(-2)^{2}-3(-2)+1$

$$
\begin{aligned}
& =-16-4+6+1 \\
& =-13
\end{aligned}
$$

c) $P(-2)=(-2)^{4}+(-2)^{3}-5(-2)^{2}+2(-2)-7$

$$
\begin{aligned}
& =16-8-20-4-7 \\
& =-23
\end{aligned}
$$

Question 7 Page 91

(

Chapter 2 Section 1

a) $P(-3)=(-3)^{3}+2(-3)^{2}-3(-3)+9$

$$
=-27+18+9+9
$$

$$
=9
$$

b) $P(-2)=2(-2)^{3}+7(-2)^{2}-(-2)+1$

$$
\begin{aligned}
& =-16+28+2+1 \\
& =15
\end{aligned}
$$

c) $\quad P(3)=(3)^{3}+2(3)^{2}-3(3)+5$

$$
=27+18-9+5
$$

$$
=41
$$

d) $P(2)=(2)^{4}-3(2)^{2}-5(2)+2$

$$
\begin{aligned}
& =16-12-10+2 \\
& =-4
\end{aligned}
$$

Chapter 2 Section 1

a) $P(-1)=k(-1)^{3}+5(-1)^{2}-2(-1)+3$

$$
7=-k+5+2+3
$$

$$
k=10-7
$$

$$
k=3
$$

b) $P(3)=3(3)^{3}+5(3)^{2}-2(3)+3$

$$
\begin{aligned}
& =81+45-6+3 \\
& =123
\end{aligned}
$$

Chapter 2 Section 1

a) $f(2)=(2)^{4}-c(2)^{3}+7(2)-6=-8$

$$
\begin{aligned}
-8 & =16-8 c+14-6 \\
8 c & =24-8 \\
c & =4
\end{aligned}
$$

b) $f(-2)=(-2)^{4}-4(-2)^{3}+7(-2)-6$

$$
\begin{aligned}
& =16+32-14-6 \\
& =28
\end{aligned}
$$

c)

- NewProb ${ }^{\text {Done }}$		
	Efil Exict func	

Question 9 Page 91

Question 11 Page 92

Question 10 Page 92

Chapter 2 Section 1

Question 12 Page 92

$$
\begin{array}{rlrl}
P(2)= & =-2(2)^{3}+b(2)^{2}-5(2)+2 & P(-1) & =-2(-1)^{3}+b(-1)^{2}-5(-1)+2 \\
& =-16+4 b-10+2 & & =2+b+5+2 \\
& =4 b-24 & & =b+9
\end{array}
$$

Since the remainders are equal,

$$
\begin{aligned}
4 b-24 & =b+9 \\
3 b & =33 \\
b & =11
\end{aligned}
$$

Chapter 2 Section 1

Question 13 Page 92

$$
\begin{array}{rlrl}
f(1) & =(1)^{3}+6(1)^{2}+k(1)-4 & f(-2)= & (-2)^{3}+6(-2)^{2}+k(-2)-4 \\
& =1+6+k-4 & & =-8+24-2 k-4 \\
& =k+3 & & =-2 k+12
\end{array}
$$

Since the remainders are equal,

```
\(k+3=-2 k+12\)
    \(3 k=9\)
    \(k=3\)
```


Chapter 2 Section 1

Question 14 Page 92

a) $P\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{3}+5\left(-\frac{1}{2}\right)^{2}-6\left(-\frac{1}{2}\right)+4$

$$
\begin{aligned}
& =-\frac{1}{4}+\frac{5}{4}+3+4 \\
& =8
\end{aligned}
$$

b) $2 x + 1 \longdiv { x ^ { 2 } + 2 x - 4 } \begin{array} { | c } { 2 x ^ { 3 } + 5 x ^ { 2 } - 6 x + 4 } \end{array}$

$$
\begin{aligned}
& \frac{2 x^{3}+x^{2}}{4 x^{2}-6 x} \\
& \frac{4 x^{2}+2 x}{-8 x+4} \\
& \frac{-8 x-4}{8}
\end{aligned}
$$

c)

Chapter 2 Section 1

Question 15 Page 92

a) $P\left(\frac{3}{2}\right)=10\left(\frac{3}{2}\right)^{4}-11\left(\frac{3}{2}\right)^{3}-8\left(\frac{3}{2}\right)^{2}+7\left(\frac{3}{2}\right)+9$

$$
=\frac{405}{8}-\frac{297}{8}-18+\frac{21}{2}+9
$$

$$
=15
$$

b)

Chapter 2 Section 1

Question 16 Page 92

a) $P\left(\frac{2}{3}\right)=6\left(\frac{2}{3}\right)^{3}+23\left(\frac{2}{3}\right)^{2}-6\left(\frac{2}{3}\right)-8$

$$
\begin{aligned}
& =\frac{16}{9}+\frac{92}{9}-4-8 \\
& =0
\end{aligned}
$$

b) $(3 x-2)$ is a factor of $6 x^{3}+23 x^{2}-6 x-8$ since there is no remainder.
c)

$$
(3 x-2)(x+4)(2 x+1)
$$

Chapter 2 Section 1

Question 17 Page 92

a)

WProb	
$\begin{array}{r} \text { Propfrac }\left(\frac{9 \cdot \pi \cdot x^{3}+51 \cdot \pi \cdot x^{2}}{x+}\right) \\ 9 \cdot \pi \cdot x^{2}+24 \cdot \pi \cdot x+16 \cdot \pi \end{array}$	

$\pi\left(9 x^{2}+14 x+16\right)$; this result represents the area of the base of the cylindrical container, i.e., the area of a circle.
b)

$\pi(3 x+4)^{2}(x+3)$
c) Volumes are given to the nearest cubic centimetre.

Value of \boldsymbol{x}	Radius (cm)	Height (cm)	Volume $\left.\mathbf{(c m}^{\mathbf{3}}\right)$
2	10	5	1571
3	13	6	3186
4	16	7	5630
5	19	8	9073
6	22	9	13685
7	25	10	19635
8	28	11	27093

Chapter 2 Section 1

Question 18 Page 92

a) $-5 t^{2}+15 t+1=(t-b)(-5 t-5 b+15)-5 b^{2}+15 b+1$
b) $Q(t)=\frac{h(t)-h(b)}{t-b}$

$$
=\frac{-5 t^{2}+15 t+1-\left[-5 b^{2}+15 b+1\right]}{t-b}
$$

$$
=\frac{-5 t^{2}+15 t+1+5 b^{2}-15 b-1}{t-b}
$$

$$
=\frac{-5\left(t^{2}-b^{2}\right)+15(t-b)}{t-b}
$$

$$
=\frac{-5(t-b)(t+b)+15(t-b)}{t-b}
$$

$$
=\frac{(t-b)[-5(t+b)+15]}{t-b}
$$

$$
=-5 t-5 b+15
$$

Rearrange the division statement from part a).
$\frac{-5 t^{2}+15 t+1-\left[-5 b^{2}+15 b+1\right]}{t-b}=-5 t-5 b+15$
c) The instantaneous rate of change at t for the function $h(t)$.

Diagrams may vary depending on choice of b. All should be linear graphs with a slope of -5 and a y-intercept of $15-5 b$.
d) Answers may vary. A sample solution is shown.

At $t=b$ there is a hole in the graph; the graph is discontinuous at $t=b$.
e) $h(3)=-5(3)^{2}+15(3)+1$

$$
=-45+45+1
$$

$$
=1
$$

At 3 s , the height of the javelin is 1 m .

Chapter 2 Section 1

Question 19 Page 93

a) $h(1.5)=-5(1.5)^{2}+8.3(1.5)+1.2$

$$
\begin{aligned}
& =-11.25+12.45+1.2 \\
& =2.4
\end{aligned}
$$

b) At 1.5 s the shot put is 2.4 m above the ground.

Chapter 2 Section 1

Question 20 Page 93

$$
\begin{array}{rr}
m(-3)^{3}-3(-3)^{2}+n(-3)+2=-1 & m(2)^{3}-3(2)^{2}+n(2)+2=-4 \\
-27 m-27-3 n+2=-1 & 8 m-12+2 n+2=-4 \\
-27 m-3 n=24 & 8 m+2 n=6 \\
9 m+n=-8 & 4 m+n=3
\end{array}
$$

Subtract the two equations to solve for m.

$$
\begin{aligned}
9 m+n & =-8 \\
-4 m+n & =3 \\
5 m & =-11 \\
m & =-\frac{11}{5}
\end{aligned}
$$

Substitute m into $4 m+n=3$ to solve for n.

$$
\begin{aligned}
4\left(-\frac{11}{5}\right)+n & =3 \\
n & =3+\frac{44}{5} \\
n & =\frac{59}{5}
\end{aligned}
$$

Chapter 2 Section 1

Question 21 Page 93

$$
\begin{array}{rlrl}
3(2)^{3}+a(2)^{2}+b(2)-9 & =-5 & 3(-1)^{3}+a(-1)^{2}+b(-1)-9 & =-16 \\
24+4 a+2 b-9 & =-5 & -3+a-b-9 & =-16 \\
4 a+2 b & =-20 & a-b & =-4 \\
2 a+b & =-10 &
\end{array}
$$

Add the two equations to solve for a.

$$
\begin{aligned}
2 a+b & =-10 \\
a-b & =-4 \\
3 a & =-14 \\
a & =-\frac{14}{3}
\end{aligned}
$$

Substitute a into $a-b=-4$ to solve for b.

$$
\begin{aligned}
-\frac{14}{3}-b & =-4 \\
b & =-\frac{14}{3}+4 \\
b & =-\frac{2}{3}
\end{aligned}
$$

Chapter 2 Section 1

Question 22 Page 93

$$
\begin{aligned}
& 3(-k)^{2}+10(-k)-3=5 \\
& 3 k^{2}-10 k-8=0 \\
&(3 k+2)(k-4)=0 \\
& k=-\frac{2}{3} \text { or } k=4
\end{aligned}
$$

Chapter 2 Section 1

Question 23 Page 93

$4 \stackrel{?}{\bar{x}}$
$\frac{1}{x-3)}$
$\underline{x-3}$
$x-3$
$x-3=4$
$x=7$

Substitute $x=7$ into $\frac{5 x}{4}$.
$\frac{35}{4}=8 \mathrm{R} 3$
The remainder is 3 .

Chapter 2 Section 1

Question 24 Page 93

$$
\begin{aligned}
a & =\mathrm{BC} \\
& =\sqrt{(3-4)^{2}+(2-8)^{2}} \\
& =\sqrt{1+36} \\
& =\sqrt{37} \\
b & =\mathrm{AC} \\
& =\sqrt{(6-4)^{2}+(4-8)^{2}} \\
& =\sqrt{4+16} \\
& =\sqrt{20} \\
c & =\mathrm{AB} \\
& =\sqrt{(6-3)^{2}+(4-2)^{2}} \\
& =\sqrt{9+4} \\
& =\sqrt{13} \\
s & =\frac{1}{2}(\sqrt{37}+\sqrt{20}+\sqrt{13}) \\
& \doteq 7.08 \\
A & \doteq \sqrt{7.08(7.08-\sqrt{37})(7.08-\sqrt{20})(7.08-\sqrt{13})} \\
A & \doteq 8
\end{aligned}
$$

Chapter 2 Section 1

Question 25 Page 93

If a right triangle is inscribed in a circle, then its hypoteneuse is a diameter of the circle. The median, MK, is the radius of the circle. HM is half the diameter which is the radius, therefore $\mathrm{HM}=\mathrm{MK}$.

Chapter 2 Section 2

Chapter 2 Section 2

a) $x-4$
b) $x+3$
c) $3 x-2$
d) $4 x+1$

Chapter 2 Section 2

a) $P(-3)=(-3)^{3}+(-3)^{2}-(-3)+6$

$$
\begin{aligned}
& =-27+9+3+6 \\
& =-9
\end{aligned}
$$

No.
b) $P(-3)=2(-3)^{3}+9(-3)^{2}+10(-3)+3$

$$
=-54+81-30+3
$$

$$
=0
$$

Yes.
c) $P(-3)=(-3)^{3}+27$

$$
\begin{aligned}
& =-27+27 \\
& =0
\end{aligned}
$$

Yes.

Chapter 2 Section 2

Question 3 Page 102

a) $P(-4)=(-4)^{3}+3(-4)^{2}-6(-4)-8$

$$
=-64+48+24-8
$$

$$
=0
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+4)$ and $(x+4)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(-1) & =(-1)^{3}+3(-1)^{2}-6(-1)-8 \\
& =-1+3+6-8 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+1)$ and $(x+1)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(2)= & (2)^{3}+3(2)^{2}-6(2)-8 \\
& =8+12-12-8 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-2)$ and $(x-2)$ is a factor of $P(x)$.
$P(x)=(x-2)(x+1)(x+4)$
b) $P(-6)=(-6)^{3}+4(-6)^{2}-15(-6)-18$

$$
=-216+144+90-18
$$

$=0$
Since the remainder is zero, $P(x)$ is divisible by $(x+6)$ and $(x+6)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(-1) & =(-1)^{3}+4(-1)^{2}-15(-1)-18 \\
& =-1+4+15-18 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+1)$ and $(x+1)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(3)= & (3)^{3}+4(3)^{2}-15(3)-18 \\
& =27+36-45-18 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-3)$ and $(x-3)$ is a factor of $P(x)$.

$$
P(x)=(x-3)(x+1)(x+6)
$$

c) $P(-3)=(-3)^{3}-3(-3)^{2}-10(-3)+24$

$$
\begin{aligned}
& =-27-27+30+24 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+3)$ and $(x+3)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(2)= & (2)^{3}-3(2)^{2}-10(2)+24 \\
& =8-12-20+24 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-2)$ and $(x-2)$ is a factor of $P(x)$.

$$
\begin{aligned}
P(4)= & (4)^{3}-3(4)^{2}-10(4)+24 \\
& =64-48-40+24 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-4)$ and $(x-4)$ is a factor of $P(x)$.
$P(x)=(x-4)(x-2)(x+3)$

Chapter 2 Section 2

a $\quad P(x)=x^{3}+x^{2}-9 x-9$
Group the first two terms and factor out x^{2}.
Then, group the second two terms and factor out -9 .
$P(x)=x^{2}(x+1)-9(x+1)$
Factor out $x+1$ and then factor the difference of squares
$P(x)=(x+1)\left(x^{2}-9\right)$
$=(x+1)(x-3)(x+3)$
$P(x)=(x+1)(x-3)(x+3)$
b) $P(x)=x^{3}-x^{2}-16 x+16$

Group the first two terms and factor out x^{2}.
Then, group the second two terms and factor out -16 .
$P(x)=x^{2}(x-1)-16(x-1)$
Factor out $x-1$ and then factor the difference of squares.
$P(x)=(x-1)\left(x^{2}-16\right)$
$=(x-1)(x-4)(x+4)$
$P(x)=(x-1)(x-4)(x+4)$
c) $P(x)=2 x^{3}-x^{2}-72 x+36$

Group the first two terms and factor out x^{2}.
Then, group the second two terms and factor out -36 .
$P(x)=x^{2}(2 x-1)-36(2 x-1)$
Factor out $2 x-1$ and then factor the difference of squares.
$P(x)=(2 x-1)\left(x^{2}-36\right)$

$$
=(2 x-1)(x-6)(x+6)
$$

$P(x)=(2 x-1)(x-6)(x+6)$
d) $P(x)=x^{3}-7 x^{2}-4 x+28$

Group the first two terms and factor out x^{2}.
Then, group the second two terms and factor out -4 .
$P(x)=x^{2}(x-7)-4(x-7)$
Factor out $x-7$ and then factor the difference of squares.

$$
\begin{aligned}
P(x) & =(x-7)\left(x^{2}-4\right) \\
& =(x-7)(x-2)(x+2) \\
P(x) & =(x-7)(x-2)(x+2)
\end{aligned}
$$

e) $P(x)=3 x^{3}+2 x^{2}-75 x-50$

Group the first two terms and factor out x^{2}.
Then, group the second two terms and factor out -25 .
$P(x)=x^{2}(3 x+2)-25(3 x+2)$
Factor out $3 x+2$ and then factor the difference of squares.
$P(x)=(3 x+2)\left(x^{2}-25\right)$
$=(3 x+2)(x-5)(x+5)$
$P(x)=(3 x+2)(x-5)(x+5)$
f) $P(x)=2 x^{4}+3 x^{3}-32 x^{2}-48 x$

Group the first two terms and factor out x^{3}.
Then, group the second two terms and factor out $-16 x$.
$P(x)=x^{3}(2 x+3)-16 x(2 x+3)$
Factor out $(2 x+3)$ and then factor $x^{3}-16 x$.
$P(x)=(2 x+3)\left(x^{3}-16 x\right)$
$=x(2 x+3)(x-4)(x+4)$
$P(x)=x(2 x+3)(x-4)(x+4)$

Chapter 2 Section 2

Question 5 Page 102

a) $P(x)=3 x^{3}+x^{2}-22 x-24$

Let b represent the factors of the constant term -24 , which are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12$, and ± 24.
Let a represent the factors of the constant term 3, which are ± 1 and ± 3.
The possible values of $\frac{b}{a}$ are
$\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}, \pm \frac{3}{1}, \pm \frac{3}{3}, \pm \frac{4}{1}, \pm \frac{4}{3}, \pm \frac{6}{1}, \pm \frac{6}{3}, \pm \frac{8}{1}, \pm \frac{8}{3}, \pm \frac{12}{1}, \pm \frac{12}{3}, \pm \frac{24}{1}, \pm \frac{24}{3}$.
Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

The zeros are $3,-2$, and $-\frac{4}{3}$.
The corresponding factors are $(x-3),(x+2)$, and $(3 x+4)$.
$3 x^{3}+x^{2}-22 x-24=(x-3)(x+2)(3 x+4)$
b) $P(x)=2 x^{3}-9 x^{2}+10 x-3$

Let b represent the factors of the constant term -3 , which are ± 1 and ± 3.
Let a represent the factors of the constant term 2 , which are ± 1 and ± 2.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}$.
Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

The zeros are 3,1 , and $\frac{1}{2}$.
The corresponding factors are $(x-3),(x-1)$, and $(2 x-1)$.
$2 x^{3}-9 x^{2}+10 x-3=(x-3)(x-1)(2 x-1)$
c) $P(x)=6 x^{3}-11 x^{2}-26 x+15$

Let b represent the factors of the constant term 15 , which are $\pm 1, \pm 3, \pm 5$, and ± 15.
Let a represent the factors of the constant term 6 , which are $\pm 1, \pm 2, \pm 3$, and ± 6.
The possible values of $\frac{b}{a}$ are
$\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{3}, \pm \frac{3}{6}, \pm \frac{5}{1}, \pm \frac{5}{2}, \pm \frac{5}{3}, \pm \frac{5}{6}, \pm \frac{15}{1}, \pm \frac{15}{2}, \pm \frac{15}{3}, \pm \frac{15}{6}$.
Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

The zeros are $3, \frac{1}{2}$, and $-\frac{5}{3}$.
The corresponding factors are $(x-3),(2 x-1)$, and $(3 x+5)$.
$6 x^{3}-11 x^{2}-26 x+15=(x-3)(2 x-1)(3 x+5)$
d) $P(x)=4 x^{3}+3 x^{2}-4 x-3$

Let b represent the factors of the constant term $-3, \pm 1$, and ± 3.
Let a represent the factors of the constant term $4, \pm 1, \pm 2$, and ± 4.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{4}$.
Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

The zeros are $1,-1$, and $-\frac{3}{4}$.
The corresponding factors are $(x-1),(x+1)$, and $(4 x+3)$.
$4 x^{3}+3 x^{2}-4 x-3=(x-1)(x+1)(4 x+3)$

Chapter 2 Section 2

Question 6 Page 102

a)

The zeros are $1,-1$, and -2 . The corresponding factors are $(x-1),(x+1)$, and $(x+2)$.

$$
x^{3}+2 x^{2}-x-2=(x-1)(x+1)(x+2)
$$

b)

The zeros are $-5,-1$, and 2 . The corresponding factors are $(x-2),(x+1)$, and $(x+5)$.
$x^{3}+4 x^{2}-7 x-10=(x-2)(x+1)(x+5)$
c)

The zeros are $-2,2$, and 5 . The corresponding factors are $(x-5),(x-2)$, and $(x+2)$.

$$
x^{3}-5 x^{2}-4 x+20=(x-5)(x-2)(x+2)
$$

d)

The zero is -4 . The corresponding factors are $(x+4)$ and $\left(x^{2}+x-1\right)$.
$x^{3}+5 x^{2}+3 x-4=(x+4)\left(x^{2}+x-1\right)$
e)

The zeros are $-3,2$, and 5. The corresponding factors are $(x-5),(x-2)$, and $(x+3)$. $x^{3}-4 x^{2}-11 x+30=(x-5)(x-2)(x+3)$.
f)

The zeros are $-2,1,2$, and 3 .
The corresponding factors are $(x-3),(x+2),(x-1)$, and $(x-2)$.
$x^{4}-4 x^{3}-x^{2}+16 x-12=(x-3)(x+2)(x-1)(x-2)$
g)

The zeros are $-3,-1,2$, and 4 .
The corresponding factors are $(x-4),(x-2),(x+1)$, and $(x+3)$.
$x^{4}-2 x^{3}-13 x^{2}+14 x+24=(x-4)(x-2)(x+1)(x+3)$

Chapter 2 Section 2

Question 7 Page 102
a)

The zeros are $\frac{1}{2}$ and $-\frac{1}{2}$ (order 2). The corresponding factors are $(2 x-1)$ and $(2 x+1)^{2}$.
$8 x^{3}+4 x^{2}-2 x-1=(2 x-1)(2 x+1)^{2}$
b)

The zeros are $-2,-\frac{3}{2}$, and 1 . The corresponding factors are $(x-1),(x+2)$, and $(2 x+3)$.
$2 x^{3}+5 x^{2}-x-6=(x-1)(x+2)(2 x+3)$
c)

The zeros are $-2, \frac{2}{5}$, and 1 . The corresponding factors are $(x-1),(x+2)$, and $(5 x-2)$. $5 x^{3}+3 x^{2}-12 x+4=(x-1)(x+2)(5 x-2)$
d)

The zeros are $-1,-\frac{2}{3}, \frac{1}{2}$, and 1 .
The corresponding factors are $(x-1),(x+1),(2 x-1)$, and $(3 x+2)$.
$6 x^{4}+x^{3}-8 x^{2}-x+2=(x-1)(x+1)(2 x-1)(3 x+2)$
e)

The zeros are -2 and 2 . The corresponding factors are $(x-2),(x+2)$, and $\left(5 x^{2}+x-2\right)$. $5 x^{4}+x^{3}-22 x^{2}-4 x+8=(x-2)(x+2)\left(5 x^{2}+x-2\right)$
f)

The zeros are $-4,-\frac{1}{3}$, and 3 . The corresponding factors are $(x-3),(x+4)$, and $(3 x+1)$.
$3 x^{3}+4 x^{2}-35 x-12=(x-3)(x+4)(3 x+1)$
g)

The zeros are $\frac{1}{3}, \frac{1}{2}$, and 2 . The corresponding factors are $(x-2),(2 x-1)$, and $(3 x-1)$.
$6 x^{3}-17 x^{2}+11 x-2=(x-2)(2 x-1)(3 x-1)$

Chapter 2 Section 2

Question 8 Page 102

The zeros are $-4,-\frac{2}{3}$, and $\frac{1}{2}$.
The corresponding factors are $(x+4),(2 x-1)$, and ($3 x+2$).
$6 x^{3}+25 x^{2}+2 x-8=(x+4)(2 x-1)(3 x+2)$
Possible dimensions of the rectangular block of soapstone in cubic metres are $(x+4)$ by $(2 x-1)$ by $(3 x+2)$.

Chapter 2 Section 2

$$
\begin{aligned}
P(-2) & =(-2)^{3}-2 k(-2)^{2}+6(-2)-4 \\
0 & =-8-8 k-12-4 \\
8 k & =-24 \\
k & =-3
\end{aligned}
$$

Chapter 2 Section 2

Question 10 Page 102

$$
\begin{aligned}
P\left(\frac{2}{3}\right) & =3\left(\frac{2}{3}\right)^{3}-5\left(\frac{2}{3}\right)^{2}+k\left(\frac{2}{3}\right)+2 \\
0 & =\frac{8}{9}-\frac{20}{9}+\frac{2}{3} k+2 \\
-\frac{8}{9}+\frac{20}{9}-\frac{18}{9} & =\frac{2}{3} k \\
-\frac{2}{3} & =\frac{2}{3} k \\
k & =-1
\end{aligned}
$$

Chapter 2 Section 2

Question 11 Page 102

a) $P(1)=2(1)^{3}+5(1)^{2}-1(1)-6$

$$
=2+5-1-6
$$

$$
=0
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-1)$ and $(x-1)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{aligned}
& \frac{2 x^{2}+7 x+6}{x - 1 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - x - 6 }} \\
& \frac{2 x^{3}-2 x^{2}}{7 x^{2}-x} \\
& \frac{7 x^{2}-7 x}{6 x-6} \\
& \underline{6 x-6}
\end{aligned}
$$

$$
2 x^{3}+5 x^{2}-x-6=(x-1)\left(2 x^{2}+7 x+6\right)
$$

$$
=(x-1)(x+2)(2 x+3)
$$

b) $P(-1)=4(-1)^{3}-7(-1)-3$

$$
=-4+7-3
$$

$$
=0
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+1)$ and $(x+1)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{array}{r}
x + 1 \longdiv { 4 x ^ { 2 } - 4 x - 3 } \\
\frac{4 x^{3}+0 x^{2}-7 x-3}{-4 x^{2}} \\
-\frac{4 x^{2}-4 x}{-3 x-3} \\
\frac{-3 x-3}{0}
\end{array}
$$

$$
\begin{aligned}
4 x^{3}-7 x-3 & =(x+1)\left(4 x^{2}-4 x-3\right) \\
& =(x+1)(2 x-3)(2 x+1)
\end{aligned}
$$

c) $P(1)=6(1)^{3}+5(1)^{2}-21(1)+10$

$$
\begin{aligned}
& =6+5-21+10 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-1)$ and $(x-1)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{aligned}
& x - 1 \longdiv { 6 x ^ { 2 } + 1 1 x - 1 0 } \\
& \frac{6 x^{3}+5 x^{2}-21 x+10}{11 x^{2}-21 x} \\
& \frac{11 x^{2}-11 x}{-10 x+10} \\
& \frac{-10 x+10}{0}
\end{aligned}
$$

$$
\begin{aligned}
6 x^{3}+5 x^{2}-21 x+10 & =(x-1)\left(6 x^{2}+11 x-10\right) \\
& =(x-1)(2 x+5)(3 x-2)
\end{aligned}
$$

d) $P(2)=4(2)^{3}-8(2)^{2}+3(2)-6$

$$
\begin{aligned}
& =32-32+6-6 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-2)$ and $(x-2)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{array}{r}
x - 2 \longdiv { 4 x ^ { 3 } - 8 x ^ { 2 } + 3 x - 6 } \\
\frac{4 x^{3}-8 x^{2}}{0 x^{2}+3 x-6} \\
\frac{3 x-6}{0}
\end{array}
$$

$4 x^{3}-8 x^{2}+3 x-6=(x-2)\left(4 x^{2}+3\right)$
e) $P\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)-1$

$$
=\frac{1}{4}+\frac{1}{4}+\frac{1}{2}-1
$$

$$
=0
$$

Since the remainder is zero, $P(x)$ is divisible by $(2 x-1)$ and $(2 x-1)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{array}{r}
2 x - 1 \longdiv { x ^ { 2 } + x + 1 } \begin{array} { r }
{ 2 x ^ { 3 } + x ^ { 2 } + x - 1 } \\
{ \frac { 2 x ^ { 3 } - x ^ { 2 } } { 2 x ^ { 2 } + x } } \\
{ \frac { 2 x ^ { 2 } - x } { 2 x - 1 } } \\
{ \frac { 2 x - 1 } { 0 } }
\end{array}
\end{array}
$$

$$
2 x^{3}+x^{2}+x-1=(2 x-1)\left(x^{2}+x+1\right)
$$

f) $P(1)=(1)^{4}-15(1)^{2}-10(1)+24$
$=1-15-10+24$
$=0$
Since the remainder is zero, $P(x)$ is divisible by $(x-1)$ and $(x-1)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } + x ^ { 2 } - 1 4 x - 2 4 } \\
& \frac{x^{4}-x^{3}}{x^{3}+0 x^{3}-15 x^{2}-10 x+24} \\
& \frac{x^{3}-x^{2}}{-15 x^{2}} \\
& \frac{-14 x^{2}+14 x}{-24 x+24} \\
& \frac{-24 x+24}{0} \\
& x^{4}-15 x^{3}-10 x+24=(x-1)\left(x^{3}+x^{2}-14 x-24\right)
\end{aligned}
$$

Factor $x^{3}+x^{2}-14 x-24$:

$$
\begin{aligned}
P(-2) & =(-2)^{3}+(-2)^{2}-14(-2)-24 \\
& =-8+4+28-24 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x+2)$ and $(x+2)$ is a factor of $P(x)$.
Use division to find the other factors.

$$
\begin{aligned}
& x + 2 \longdiv { x ^ { 2 } - x - 1 2 } \\
& \frac{x^{3}+x^{2}-14 x-24}{-x^{2}} \\
& \frac{-x^{2}-2 x}{-12 x-24} \\
& \frac{-12 x-24}{0} \\
& \begin{aligned}
x^{4}-15 x^{3}-10 x+24 & =(x-1)(x+2)\left(x^{2}-x-12\right) \\
& =(x-4)(x-1)(x+2)(x+3)
\end{aligned}
\end{aligned}
$$

Chapter 2 Section 2

Question 12 Page 103

a) i) $\quad P(1)=(1)^{3}-1$

$$
\begin{aligned}
& =1-1 \\
& =0
\end{aligned}
$$

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)
$$

ii)

Since the remainder is zero, $P(x)$ is divisible by $(x-3)$ and $(x-3)$ is a factor of $P(x)$.
Use division to find the other factor.

-3 -	1	0	0	-27
-3	-9	-27		
\times	1	3	9	0

$x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$
iv) $P(4)=(4)^{3}-64$

$$
\begin{aligned}
& =64-64 \\
& =0
\end{aligned}
$$

Since the remainder is zero, $P(x)$ is divisible by $(x-4)$ and $(x-4)$ is a factor of $P(x)$.
Use division to find the other factor.

-4	1	0	0	-64
-	-4	-16	-64	
\times	1	4	16	0

$x^{3}-64=(x-4)\left(x^{2}+4 x+16\right)$
b) $x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)$
c) $(x-5)\left(x^{2}+5 x+25\right)$
d) i) $(2 x-1)\left(4 x^{2}+2 x+1\right)$
ii) $\left(5 x^{2}-2\right)\left(25 x^{4}+10 x^{2}+4\right)$
iii) $\left(4 x^{4}-3\right)\left(16 x^{8}+12 x^{4}+9\right)$
iv) $\left(\frac{2}{5} x-4 y^{2}\right)\left(\frac{4}{25} x^{2}+\frac{8}{5} x y^{2}+16 y^{4}\right)$

Chapter 2 Section 2

Question 13 Page 103
a) i)

ii)

$x^{3}+8=(x+2)\left(x^{2}-2 x+4\right)$
iii)

iv)

$x^{3}+64=(x+4)\left(x^{2}-4 x+16\right)$
b) $x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right)$
c) $(x+5)\left(x^{2}-5 x+25\right)$
d) i) $(2 x+1)\left(4 x^{2}-2 x+1\right)$
ii) $\left(5 x^{2}+2\right)\left(25 x^{4}-10 x^{2}+4\right)$
iii) $\left(4 x^{4}+3\right)\left(16 x^{8}-12 x^{4}+9\right)$
iv) $\left(\frac{2}{5} x+4 y^{2}\right)\left(\frac{4}{25} x^{2}-\frac{8}{5} x y^{2}+16 y^{4}\right)$

Chapter 2 Section 2

Question 14 Page 103

$x^{4}+x^{2}+1=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
Neither factor has integer zeros so $x^{4}+x^{2}+1$ is non-factorable over the integers.
From the graph, you can see there are no zeros.

Chapter 2 Section 2

Question 15 Page 103

a) let $m=x^{2}$

$$
\begin{aligned}
4 x^{4}-37 x^{2}+9 & =4 m^{2}-37 m+9 \\
& =(m-9)(4 m-1)
\end{aligned}
$$

$m=9$ or $m=\frac{1}{4}$
$x^{2}=9$ or $x^{2}=\frac{1}{4}$
$x= \pm 3$ or $x= \pm \frac{1}{2}$
$4 x^{4}-37 x^{2}+9=(x-3)(x+3)(2 x-1)(2 x+1)$
b) let $m=x^{2}$

$$
\begin{aligned}
9 x^{4}-148 x^{2}+64 & =9 m^{2}-148 m+64 \\
& =(m-16)(9 m-4)
\end{aligned}
$$

$m=16$ or $m=\frac{4}{9}$
$x^{2}=16$ or $x^{2}=\frac{4}{9}$
$x= \pm 4$ or $x= \pm \frac{2}{3}$
$9 x^{3}-148 x^{2}+64=(x-4)(x+4)(3 x-2)(3 x+2)$

Chapter 2 Section 2

Question 16 Page 103

Solutions to Achievement Check questions are provided in the Teacher's Resource.

Chapter 2 Section 2

Question 17 Page 103

a) The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{4}{1}, \pm \frac{4}{2}, \pm \frac{6}{1}, \pm \frac{6}{2}, \pm \frac{12}{1}, \pm \frac{12}{2}$.

Test the values of $\frac{b}{a}$ for x to find the zeros.

$$
\begin{aligned}
P(2) & =2(2)^{5}+3(2)^{4}-10(2)^{3}-15(2)^{2}+8(2)+12 \\
& =64+48-80-60+16+12 \\
& =0 \\
P(1) & =2(1)^{5}+3(1)^{4}-10(1)^{3}-15(1)^{2}+8(1)+12 \\
& =2+3-10-15+8+12 \\
& =0
\end{aligned}
$$

$$
P(-1)=2(-1)^{5}+3(-1)^{4}-10(-1)^{3}-15(-1)^{2}+8(-1)+12
$$

$$
=-2+3+10-15-8+12
$$

$$
=0
$$

$$
P(-2)=2(-2)^{5}+3(-2)^{4}-10(-2)^{3}-15(-2)^{2}+8(-2)+12
$$

$$
=-64+48+80-60-16+12
$$

$$
=0
$$

$$
P\left(-\frac{3}{2}\right)=2\left(-\frac{3}{2}\right)^{5}+3\left(-\frac{3}{2}\right)^{4}-10\left(-\frac{3}{2}\right)^{3}-15\left(-\frac{3}{2}\right)^{2}+8\left(-\frac{3}{2}\right)+12
$$

$$
=-\frac{243}{16}+\frac{243}{16}+\frac{135}{4}-\frac{135}{4}-12+12
$$

$$
=0
$$

$$
2 x^{5}+3 x^{4}-10 x^{3}-15 x^{2}+8 x+12=(x-2)(x-1)(x+1)(x+2)(2 x+3)
$$

b) The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{2}{4}, \pm \frac{4}{1}, \pm \frac{4}{2}, \pm \frac{4}{4}, \pm \frac{8}{1}, \pm \frac{8}{2}, \pm \frac{8}{4}$.

Test the values of $\frac{b}{a}$ for x to find the zeros.

$$
\begin{aligned}
P(-2) & =4(-2)^{6}+12(-2)^{5}-9(-2)^{4}-51(-2)^{3}-30(-2)^{2}+12(-2)+8 \\
& =256-384-144+408-120-24+8 \\
& =0 \\
P(-1) & =4(-1)^{6}+12(-1)^{5}-9(-1)^{4}-51(-1)^{3}-30(-1)^{2}+12(-1)+8 \\
& =4-12-9+51-30-12+8 \\
& =0 \\
P\left(-\frac{1}{2}\right) & =4\left(-\frac{1}{2}\right)^{6}+12\left(-\frac{1}{2}\right)^{5}-9\left(-\frac{1}{2}\right)^{4}-51\left(-\frac{1}{2}\right)^{3}-30\left(-\frac{1}{2}\right)^{2}+12\left(-\frac{1}{2}\right)+8 \\
& =\frac{1}{16}-\frac{3}{8}-\frac{9}{16}+\frac{51}{8}-\frac{15}{2}-6+8 \\
& =0 \\
P\left(\frac{1}{2}\right) & =4\left(\frac{1}{2}\right)^{6}+12\left(\frac{1}{2}\right)^{5}-9\left(\frac{1}{2}\right)^{4}-51\left(\frac{1}{2}\right)^{3}-30\left(\frac{1}{2}\right)^{2}+12\left(\frac{1}{2}\right)+8 \\
& =\frac{1}{16}+\frac{3}{8}-\frac{9}{16}-\frac{51}{8}-\frac{15}{2}+6+8 \\
& =0 \\
P(2) & =4(2)^{6}+12(2)^{5}-9(2)^{4}-51(2)^{3}-30(2)^{2}+12(2)+8 \\
= & 256+384-144-408-120+24+8 \\
= & 0
\end{aligned}
$$

Only found 5 factors and the degree is 6 , so one must have order 2 .
Divide to determine the last factor.

$4 x^{6}+12 x^{5}-9 x^{4}-51 x^{3}-30 x^{2}+12 x+8=(x-2)(x+1)(x+2)^{2}(2 x-1)(2 x+1)$

Chapter 2 Section 2

$$
\begin{aligned}
P(2) & =2(2)^{3}+m(2)^{2}+n(2)-3 \\
0 & =16+4 m+2 n-3 \\
4 m+2 n & =-13
\end{aligned}
$$

Question 18 Page 103

$$
\begin{aligned}
Q(2) & =(2)^{3}-3 m(2)^{2}+2 n(2)+4 \\
0 & =8-12 m+4 n+4 \\
12 m-4 n & =12 \\
6 m-2 n & =6
\end{aligned}
$$

Solve for n by adding Q and P.

$$
10 m=-7
$$

$$
m=-\frac{7}{10}
$$

Substitute m into Q.

$$
\begin{aligned}
6\left(-\frac{7}{10}\right)-2 n & =6 \\
-2 n & =6+\frac{21}{5} \\
-2 n & =\frac{51}{5} \\
n & =-\frac{51}{10}
\end{aligned}
$$

Chapter 2 Section 2

Question 19 Page 103

a) $\quad P(x)=a(x+4)(4 x+3)(2 x-1)$
$P(-2)=a(2)(-5)(-5)$

$$
50=50 a
$$

$$
a=1
$$

Therefore $P(x)=(x+4)(4 x+3)(2 x-1)$.
b) $P(x)=a(x-3)(x+1)(3 x-2)(2 x+3)$

$$
\begin{aligned}
P(1) & =a(-2)(2)(1)(5) \\
-18 & =-20 a \\
a & =\frac{9}{10}
\end{aligned}
$$

Therefore $P(x)=\frac{9}{10}(x-3)(x+1)(3 x-2)(2 x+3)$.

Chapter 2 Section 2

a) i) $(x-1)(x+1)\left(x^{2}+1\right)$

To help predict a pattern for b$) ; x^{4}-1$ partially factored is $(x-1)\left(x^{3}+x^{2}+x+1\right)$.
ii) $(x-2)(x+2)\left(x^{2}+4\right)$

To help predict a pattern for b); $x^{4}-16$ partially factored is $(x-2)\left(x^{3}+2 x^{2}+4 x+8\right)$.
iii)

$(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$
iv)

$$
(x-2)\left(x^{4}+2 x^{3}+4 x^{2}+8 x+16\right)
$$

b) $x^{n}-a^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots+a^{n-3} x^{2}+a^{n-2} x+a^{n-1}\right)$ where n is a positive integer.
c) $(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)$
d) i) $(x-5)\left(x^{2}+25\right)$
ii) $(x-3)\left(x^{4}+3 x^{3}+9 x^{2}+27 x+81\right)$

Chapter 2 Section 2

Question 21 Page 103
Yes, but only if n is odd.

There is no pattern for $x^{n}+a^{n}$ when n is even.

Yes, but only if n is odd. Let $n=2 k+1$. Then,
$x^{2 k+1}+a^{2 k+1}=(x+a)\left(x^{2 k}-x^{2 k-1} a+x^{2 k-2} a^{2}-x^{2 k-3} a^{3}+\ldots-x a^{2 k-1}+a^{2 k}\right)$.

Chapter 2 Section 2

Question 22 Page 103
$7 x-5$

Chapter 2 Section 3

Chapter 2 Section 3

a) $x=0$ or $x=-2$ or $x=5$
b) $x=1$ or $x=4$ or $x=-3$
c) $x=-\frac{2}{3}$ or $x=-9$ or $x=2$
d) $x=7$ or $x=-\frac{2}{3}$ or $x=-1$
e) $x=\frac{1}{4}$ or $x=\frac{3}{2}$ or $x=-8$
f) $x=\frac{5}{2}$ or $x=-\frac{5}{2}$ or $x=7$
g) $x=\frac{8}{5}$ or $x=-3$ or $x=\frac{1}{2}$

Chapter 2 Section 3

a) $x=-3$ or $x=-1$ or $x=1$
b) $x=-1$ or $x=3$ or $x=4$
c) $x=-2$ or $x=-1$ or $x=2$ or $x=3$
d) $x=-5$ or $x=-2$ or $x=1$
e) $x=-3$ or $x=-1$ or $x=0$ or $x=2$

Polynomial Equations

Question 1 Page 110

Chapter 2 Section 3

Question 3 Page 110

a) $x=4$
b) $(x-1)(x+1)\left(x^{2}+4\right)=0$
$x=1$ or $x=-1$
c) $\left(3 x^{2}+27\right)(x-4)(x+4)=0$
$x=4$ or $x=-4$
d) $\left(x^{2}-1\right)\left(x^{2}+1\right)(x-5)(x+5)=0$
$(x-1)(x+1)\left(x^{2}+1\right)(x-5)(x+5)=0$
$x=-1$ or $x=1$ or $x=5$ or $x=-5$
e) $(2 x-3)(2 x+3)\left(x^{2}+16\right)=0$
$x=\frac{3}{2}$ or $x=-\frac{3}{2}$
f) $(x+4)(x+3)(x-7)(x+7)=0$
$x=7$ or $x=-7$ or $x=-3$ or $x=-4$
g) $4(2 x-1)(x+3)\left(x^{2}-25\right)=0$ $4(2 x-1)(x+3)(x-5)(x+5)=0$
$x=-3$ or $x=\frac{1}{2}$ or $x=5$ or $x=-5$

Chapter 2 Section 3

Question 4 Page 110

a) $y=x^{3}-4 x^{2}-45 x$
$0=x\left(x^{2}-4 x-45\right)$
$0=x(x-9)(x+5)$
$x=0$ or $x=9$ or $x=-5$
The x-intercepts are $-5,0,9$.
b) $f(x)=x^{2}\left(x^{2}-81\right)$

$$
\begin{aligned}
& 0=x^{2}(x-9)(x+9) \\
& x=0 \text { or } x=9 \text { or } x=-9
\end{aligned}
$$

The x-intercepts are $-9,0,9$.
c) $P(x)=x\left(6 x^{2}-5 x-4\right)$

$$
0=x(3 x-4)(2 x+1)
$$

$$
x=0 \text { or } x=\frac{4}{3} \text { or } x=-\frac{1}{2}
$$

The x-intercepts are $-\frac{1}{2}, 0, \frac{4}{3}$.
d) $h(x)=x^{2}(x+1)-4(x+1)$
$0=\left(x^{2}-4\right)(x+1)$
$0=(x-2)(x+2)(x+1)$ $x=2$ or $x=-2$ or $x=-1$

The x-intercepts are $-2,-1,2$.
e) $g(x)=\left(x^{2}-4\right)\left(x^{2}+4\right)$

$$
\begin{aligned}
& 0=(x-2)(x+2)\left(x^{2}+4\right) \\
& x=2 \text { or } x=-2
\end{aligned}
$$

The x-intercepts are $-2,2$.
f) $k(x)=x^{3}(x-2)-x(x-2)$

$$
0=\left(x^{3}-x\right)(x-2)
$$

$$
0=x\left(x^{2}-1\right)(x-2)
$$

$$
0=x(x-1)(x+1)(x-2)
$$

$$
x=0 \text { or } x=1 \text { or } x=-1 \text { or } x=2
$$

The x-intercepts are $-1,0,1,2$.
g) let $m=x^{2}$

$$
\begin{aligned}
t(m) & =m^{2}-29 m+100 \\
0 & =(m-25)(m-4)
\end{aligned}
$$

$$
\text { substitute } x \text { back in for } m
$$

$$
\begin{aligned}
t(x) & =\left(x^{2}-25\right)\left(x^{2}-4\right) \\
0 & =(x-5)(x+5)(x-2)(x+2) \\
x & =5 \text { or } x=-5 \text { or } x=2 \text { or } x=-2
\end{aligned}
$$

The x-intercepts are $-5,-2,2,5$.

Chapter 2 Section 3

Question 5 Page 111

Answers may vary. A sample solution is shown.
a) False. If the graph of a quartic function has four x-intercepts, then the corresponding quartic equation has four real roots.
b) True.
c) False. A polynomial equation of degree 3 has three or fewer real roots.
d) False. If a polynomial equation is not factorable, the roots can be determined by graphing.
e) True.

Chapter 2 Section 3

Question 6 Page 111

a) By the integral zero theorem test factors of 18 , that is, $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Use division to determine the other factor.

$$
\begin{aligned}
& 2 \\
& \begin{array}{c|rrr}
1 & -4 & -3 & 18 \\
- & 2 & -12 & 18 \\
\hline \times & 1 & -6 & 9
\end{array} \\
& \begin{array}{l}
P(x) \\
=x^{3}-4 x^{2}-3 x+18 \\
0
\end{array}=(x+2)\left(x^{2}-6 x+9\right) \\
& 0=(x+2)(x-3)^{2} \\
& x=-2 \text { or } x=3
\end{aligned}
$$

b) By the integral zero theorem test factors of 10 , that is, $\pm 1, \pm 2, \pm 5, \pm 10$.

Since $x=1$ is a zero of $P(x),(x-1)$ is a factor.
Use division to determine the other factor.

-1	1	-4	-7	10
-	-1	3	10	
\times	1	-3	-10	0

$$
\begin{aligned}
P(x) & =x^{3}-4 x^{2}-7 x+10 \\
0 & =(x-1)\left(x^{2}-3 x-10\right) \\
0 & =(x-1)(x-5)(x+2) \\
x & =5 \text { or } x=-2 \text { or } x=1
\end{aligned}
$$

c) By the integral zero theorem test factors of -3 , that is, $\pm 1, \pm 3$.

Since $x=1$ is a zero of $P(x),(x-1)$ is a factor.
Use division to determine the other factor.

-1	1	-5	7	-3
-	-1	4	-3	
\times	1	-4	3	0

$$
\begin{aligned}
P(x) & =x^{3}-5 x^{2}+7 x-3 \\
0 & =(x-1)\left(x^{2}-4 x+3\right) \\
0 & =(x-1)(x-3)(x-1) \\
0 & =(x-1)^{2}(x-3) \\
x & =1 \text { or } x=3
\end{aligned}
$$

d) By the integral zero theorem test factors of -12 , that is, $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Use division to determine the other factor.

2	1	1	-8	-12
-	2	-2	-12	
\times	1	-1	-6	0

$$
\begin{aligned}
P(x) & =x^{3}+x^{2}-8 x-12 \\
0 & =(x+2)\left(x^{2}-x-6\right) \\
0 & =(x+2)(x-3)(x+2) \\
0 & =(x+2)^{2}(x-3) \\
x & =-2 \text { or } x=3
\end{aligned}
$$

e) By the integral zero theorem test factors of 12 , that is, $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Use division to determine the other factor.

$$
\begin{aligned}
& \begin{array}{r|rrrr}
2 & 1 & -3 & -4 & 12 \\
- & 2 & -10 & 12 \\
\hline \times & 1 & -5 & 6 & 0
\end{array} \\
& P(x)=x^{3}-3 x^{2}-4 x+12 \\
& 0=(x+2)\left(x^{2}-5 x+6\right) \\
& 0=(x+2)(x-2)(x-3) \\
& x=-2 \text { or } x=2 \text { or } x=3
\end{aligned}
$$

f) By the integral zero theorem test factors of 4 , that is, $\pm 1, \pm 2, \pm 4$.

Since $x=1$ is a zero of $P(x),(x-1)$ is a factor.
Use division to determine the other factor.

-1	1	-7	4	
-	-1	-3	4	
\times	1	3	-4	0

$$
\begin{aligned}
P(x) & =x^{3}+2 x^{2}-7 x+4 \\
0 & =(x-1)\left(x^{2}+3 x-4\right) \\
0 & =(x-1)(x+4)(x-1) \\
0 & =(x-1)^{2}(x+4) \\
x & =-4 \text { or } x=1
\end{aligned}
$$

g) By the integral zero theorem test factors of 5 , that is, $\pm 1, \pm 5$.

Since $x=-1$ is a zero of $P(x),(x+1)$ is a factor.
Use division to determine the other factor.

$$
\left.\begin{array}{l|rrrr}
1 & 1 & -3 & 1 & 5 \\
- & 1 & -4 & 5
\end{array}\right]
$$

Chapter 2 Section 3

Question 7 Page 111
a) Use the rational zero theorem to determine the values that should be tested.

Let b represent the factors of the constant term -6 , which are $\pm 1, \pm 2, \pm 3, \pm 6$.
Let a represent the factors of the leading coefficient 2 , which are $\pm 1, \pm 2$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{6}{1}, \pm \frac{6}{2}$.
Test the values of $\frac{b}{a}$ for x to find the zeros.

Since $x=-1$ is a zero of $P(x),(x+1)$ is a factor.
Use division to determine the other factor.

1	2	-5	-6	
-	2	1	-6	
\times	2	1	-6	0

$$
\begin{aligned}
P(x) & =2 x^{3}+3 x^{2}-5 x-6 \\
0 & =(x+1)\left(2 x^{2}+x-6\right) \\
0 & =(x+1)(2 x-3)(x+2) \\
x & =-2 \text { or } x=-1 \text { or } x=\frac{3}{2}
\end{aligned}
$$

b) Use the rational zero theorem to determine the values that should be tested.

Let b represent the factors of the constant term 9 , which are $\pm 1, \pm 3, \pm 9$.
Let a represent the factors of the leading coefficient 2 , which are $\pm 1, \pm 2$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{9}{1}, \pm \frac{9}{2}$.

Since $x=3$ is a zero of $P(x),(x-3)$ is a factor.
Since $x=-\frac{1}{2}$ is a zero of $P(x),(2 x+1)$ is a factor.
Using division we discover that the factor $(x-3)$ is of order 2 .

$$
\begin{aligned}
P(x) & =2 x^{3}-11 x^{2}+12 x+9 \\
0 & =(x-3)(2 x+1)(x-3) \\
0 & =(2 x+1)(x-3)^{2} \\
x & =-\frac{1}{2} \text { or } x=3
\end{aligned}
$$

c) Use the rational zero theorem to determine the values that should be tested.

Let b represent the factors of the constant term -8 , which are $\pm 1, \pm 2, \pm 4, \pm 8$.
Let a represent the factors of the leading coefficient 9 , which are $\pm 1, \pm 3, \pm 9$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{1}{9}, \pm \frac{2}{1}, \pm \frac{2}{3}, \pm \frac{2}{9}, \pm \frac{4}{1}, \pm \frac{4}{3}, \pm \frac{4}{9}, \pm \frac{8}{1}, \pm \frac{8}{3}, \pm \frac{8}{9}$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Since $x=-\frac{2}{3}$ is a zero of $P(x),(3 x+2)$ is a factor.
Since $x=\frac{2}{3}$ is a zero of $P(x),(3 x-2)$ is a factor.
$0=9 x^{3}+18 x^{2}-4 x-8$
$0=(x+2)(3 x+2)(3 x-2)$
$0=(x+2)(3 x+2)(3 x-2)$
$x=-2$ or $x=-\frac{2}{3}$ or $x=\frac{2}{3}$
d) Use the rational zero theorem to determine the values that should be tested.

Let b represent the factors of the constant term 18 , which are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$.
Let a represent the factors of the leading coefficient 5 , which are $\pm 1, \pm 5$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{5}, \pm \frac{2}{1}, \pm \frac{2}{5}, \pm \frac{3}{1}, \pm \frac{3}{5}, \pm \frac{6}{1}, \pm \frac{6}{5}, \pm \frac{9}{1}, \pm \frac{9}{5}, \pm \frac{18}{1}, \pm \frac{18}{5}$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Since $x=\frac{3}{5}$ is a zero of $P(x),(5 x-3)$ is a factor.
Since $x=3$ is a zero of $P(x),(x-3)$ is a factor.

$$
\begin{aligned}
& 5 x^{3}-8 x^{2}-27 x+18=(x+2)(5 x-3)(x-3) \\
& (x+2)(5 x-3)(x-3)=0 \\
& x=-2 \text { or } x=\frac{3}{5} \text { or } x=3
\end{aligned}
$$

e) $8 x^{4}-64 x=8 x\left(x^{3}-8\right)$

$$
0=8 x(x-2)\left(x^{2}+2 x+4\right)
$$

$x=0$ or $x=2$
f) $4 x^{4}-2 x^{3}-16 x^{2}+8 x=2 x\left(2 x^{3}-x^{2}-8 x+4\right)$

Use the rational zero theorem to determine the values that should be tested.
Let b represent the factors of the constant term 4 , which are $\pm 1, \pm 2, \pm 4$.
Let a represent the factors of the leading coefficient 2 , which are $\pm 1, \pm 2$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{4}{1}, \pm \frac{4}{2}$.

Since $x=-2$ is a zero of $P(x),(x+2)$ is a factor.
Since $x=\frac{1}{2}$ is a zero of $P(x),(2 x-1)$ is a factor.
Since $x=2$ is a zero of $P(x),(x-2)$ is a factor.

$$
\begin{aligned}
& 4 x^{4}-2 x^{3}-16 x^{2}+8 x=2 x(x+2)(2 x-1)(x-2) \\
& 2 x(x+2)(2 x-1)(x-2)=0 \\
& x=-2 \text { or } x=0 \text { or } x=\frac{1}{2} \text { or } x=2
\end{aligned}
$$

g) By the integral zero theorem test factors of 18 , that is, $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$.

Since $x=-3$ is a zero of $P(x),(x+3)$ is a factor.
Since $x=-1$ is a zero of $P(x),(x+1)$ is a factor.
Since $x=2$ is a zero of $P(x),(x-2)$ is a factor.
Since $x=3$ is a zero of $P(x),(x-3)$ is a factor.

$$
\begin{aligned}
& x^{4}-x^{3}-11 x^{2}+9 x+18=(x+3)(x+1)(x-2)(x-3) \\
& (x+3)(x+1)(x-2)(x-3)=0 \\
& x=-3 \text { or } x=-1 \text { or } x=2 \text { or } x=3
\end{aligned}
$$

Chapter 2 Section 3

Question 8 Page 111
a) By the integral zero theorem test factors of 8 , that is, $\pm 1, \pm 2, \pm 4, \pm 8$.

Since $x=-1$ is a zero of $P(x),(x+1)$ is a factor.
Since $x=2$ is a zero of $P(x),(x-2)$ is a factor.
Since $x=4$ is a zero of $P(x),(x-4)$ is a factor.

$$
\begin{aligned}
& x^{3}-5 x^{2}+2 x+8=(x+1)(x-2)(x-4) \\
& (x+1)(x-2)(x-4)=0 \\
& x=-1 \text { or } x=2 \text { or } x=4
\end{aligned}
$$

b) By the integral zero theorem test factors of -6 , that is, $\pm 1, \pm 2, \pm 3, \pm 6$.

Divide to determine the other factor.

$$
\begin{aligned}
x^{3}-x^{2}-4 x-6 & =(x-3)\left(x^{2}+2 x+2\right) \\
(x-3)\left(x^{2}+2 x+2\right) & =0 \\
x & =3
\end{aligned}
$$

c) Use the rational zero theorem to determine the values that should be tested.

Let b represent the factors of the constant term -5 , which are $\pm 1, \pm 5$.
Let a represent the factors of the leading coefficient 2 , which are $\pm 1, \pm 2$.
The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{5}{1}, \pm \frac{5}{2}$.

Divide to determine the other factors.

$$
\begin{aligned}
2 x^{3}-7 x^{2}+10 x-5 & =(x-1)\left(2 x^{2}-5 x+5\right) \\
(x-1)\left(2 x^{2}-5 x+5\right) & =0 \\
x & =1
\end{aligned}
$$

d) By the integral zero theorem test factors of -4 , that is, $\pm 1, \pm 2, \pm 4$.

$$
\begin{aligned}
P(-1) & =(-1)^{4}-(-1)^{3}-2(-1)-4 \\
& =1+1+2-4 \\
& =0
\end{aligned}
$$

Since $x=-1$ is a zero of $P(x),(x+1)$ is a factor.
Divide to determine the other factors.

$$
\begin{aligned}
& \begin{array}{l|rrrr}
1 & 1 & -1 & 0 & -2 \\
-4 \\
- & 1 & -2 & 2 & -4 \\
\hline \times & 1-2 & 2 & -4 & 0
\end{array} \\
& x^{4}-x^{3}-2 x-4=(x+1)\left(x^{3}-2 x^{2}+2 x-4\right) \\
& P(2)=(2)^{3}-2(2)^{2}+2(2)-4 \\
& =8-8+4-4 \\
& =0
\end{aligned}
$$

Since $x=2$ is a zero of $P(x),(x-2)$ is a factor.
Divide to determine the other factors.

-2	1	-2	2	-4
-	-2	0	-4	
\times	1	0	2	0

$x^{4}-x^{3}-2 x-4=(x+1)(x-2)\left(x^{2}+2\right)$
$(x+1)(x-2)\left(x^{2}+2\right)=0$
$x=-1$ or $x=2$
e) $x^{4}+13 x^{2}+36=0$
$x^{4}+13 x^{2}=-36$
$x^{4}+13 x^{2}$ cannot be negative.
$x^{4}+13 x^{2}+36=0$ has no real roots since there are no real values of x that satisfy the equation.
b)

Chapter 2 Section 3

a) Set the mode to approximate.

$$
x \doteq-2.2 \text { or } x \doteq 0.5 \text { or } x \doteq 1.7
$$

Question 9 Page 111

$x \doteq-4.5$ or $x \doteq-0.6$ or $x \doteq 0.6$
c)

$x \doteq-1.2$ or $x \doteq 1.2$
d)

$$
x \doteq-1.3
$$

e)

$$
x \doteq-1.4 \text { or } x \doteq 1.9
$$

f)

$x=-1$ or $x \doteq 0.4$ or $x=1.4$
g)

There are no real roots.

Chapter 2 Section 3

Question 10 Page 111

Let x be the height of the tank.
width $=x-3$

$$
\begin{aligned}
V(x) & =w^{2} \times h \quad(\text { square based }) \\
20 & =(x-3)^{2} x \\
0 & =\left(x^{2}-6 x+9\right)-20 \\
0 & =x^{3}-6 x^{2}+9 x-20
\end{aligned}
$$

By the integral zero theorem test factors of 20 , that is, $\pm 1, \pm 2, \pm 4, \pm 5, \pm 20$.

$$
\begin{aligned}
V(5) & =(5)^{3}-6(5)^{2}+9(5)-20 \\
& =125-150+45-20 \\
& =0
\end{aligned}
$$

Since $x=5$ is a zero of $P(x),(x-5)$ is a factor.
Divide to determine the other factors.

-5	1	-6	9	-20
-	-5	5	-20	
\times	1	-1	4	0

$$
\begin{aligned}
V(x) & =(x-5)\left(x^{2}-x+4\right) \\
0 & =(x-5)\left(x^{2}-x+4\right) \\
x & =x^{2}-x+4 \text { or } x=5
\end{aligned}
$$

$$
x=\frac{1 \pm \sqrt{1^{2}-4(1)(4)}}{2(1)}
$$

$$
x=\frac{1 \pm \sqrt{-15}}{2}
$$

Since the only positive root is $x=5$, the height of the tank is 5 m . width $=2$

The dimensions of the tank are 2 m by 2 m by 5 m .

Chapter 2 Section 3

Question 11 Page 111

$$
\begin{aligned}
V(x) & =(2 x-7)(2 x+3)(x-2) \\
117 & =4 x^{3}-16 x^{2}-5 x+42 \\
0 & =4 x^{3}-16 x^{2}-5 x-75
\end{aligned}
$$

Use the rational zero theorem to determine the values that should be tested.
Let b represent the factors of the constant term -75 , which are $\pm 1, \pm 3, \pm 5, \pm 15, \pm 25, \pm 75$.
Let a represent the factors of the leading coefficient 4 , which are $\pm 1, \pm 2, \pm 4$.
The possible values of $\frac{b}{a}$ are
$\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{5}{1}, \pm \frac{5}{2}, \pm \frac{5}{4}, \pm \frac{15}{1}$,
$\pm \frac{15}{2}, \pm \frac{15}{4}, \pm \frac{25}{1}, \pm \frac{25}{2}, \pm \frac{25}{4}, \pm \frac{75}{1}, \pm \frac{75}{2}, \pm \frac{75}{4}$.

Since $x=5$ is a zero of $V(x),(x-5)$ is a factor.
Divide to determine the other factors.

-5	4	-16	-5	-75
-	-20	-20	-75	
\times	4	4	15	0

$$
\begin{aligned}
V(x) & =(x-5)\left(4 x^{2}+4 x+15\right) \\
0 & =(x-5)\left(4 x^{2}+4 x+15\right) \\
x & =5
\end{aligned}
$$

Since the only positive real root is $x=5$:
width: $2 x-7=3$
length: $2 x+3=13$
height: $x-2=3$
The dimensions are 13 m by 3 m by 3 m .

Chapter 2 Section 3

Question 12 Page 111

Answers may vary. A sample solution is shown.
Yes, for example: $x^{3}+2=0$
$x^{3}=-2$
$x=\sqrt[3]{-2}$
$x \doteq-1.26$

Chapter 2 Section 3

Question 13 Page 111

Answers may vary. A sample solution is shown.
No. If the radical part of the quadratic is negative, then two non-real roots occur.
Example:

$$
\begin{aligned}
& x^{3}-x^{2}+5 x-5=0 \\
& x^{2}(x-1)+5(x-1)=0 \\
& \quad\left(x^{2}+5\right)(x-1)=0 \\
& x^{2}=-5 \text { or } x=1 \\
& x= \pm \sqrt{-5} \text { or } x=1
\end{aligned}
$$

Chapter 2 Section 3

Question 14 Page 111

$$
\begin{aligned}
& -4 t^{3}+40 t^{2}+500 t=4088 \\
& -4 t^{3}+40 t^{2}+500 t-4088=0 \\
& -4\left(t^{3}-10 t^{2}-125 t+1022\right)=0
\end{aligned}
$$

By the integral zero theorem test factors of 1022 , that is, $\pm 1, \pm 2, \pm 7, \pm 146, \pm 511, \pm 1022$.

Since $t=7$ is a zero of $P(t),(t-7)$ is a factor.
Use division to find any other factors.

-7	1	-10	-125	1022
-	-7	21	1022	
\times	1	-3	-146	0

$0=-4\left(t^{3}-10 t^{2}-125 t+1022\right)$
$0=-4(t-7)\left(t^{2}-3 t-146\right)$
$t=7$
or
$t=\frac{3 \pm \sqrt{(-3)^{2}-4(1)(-146)}}{2}$
$t=\frac{3 \pm \sqrt{593}}{2}$
$t \doteq 13.7$ or $t \doteq-10.7$
Since time cannot be negative and $0 \leq t \leq 10, t=7 \mathrm{~h}$.
It takes the plane 7 hours to fly 4088 km .

Chapter 2 Section 3

Question 15 Page 111

$$
\begin{aligned}
d(x) & =0.0005\left(x^{4}-16 x^{3}+512 x\right) \\
0 & =0.0005 x\left(x^{3}-16 x^{2}+512\right)
\end{aligned}
$$

Let $P(x)=x^{3}-16 x^{2}+512$

$$
\begin{aligned}
P(8) & =(8)^{3}-16(8)^{2}+512 \\
& =512-1024+512 \\
& =0
\end{aligned}
$$

Since $x=8$ is a zero of $P(x),(x-8)$ is a factor.

$$
\begin{aligned}
x^{3}-16 x^{2}+512 & =0 \\
(x-8)\left(x^{2}-8 x-64\right) & =0 \\
x & =8
\end{aligned}
$$

or
$x=\frac{8 \pm \sqrt{(-8)^{2}-4(1)(-64)}}{2(1)}$
$x=\frac{8 \pm \sqrt{320}}{2}$
$x \doteq 12.9$ or $x \doteq-4.9$
The weight should be placed 0 m or 8 m or approximately 12.9 m from the end.

Chapter 2 Section 3

Question 16 Page 112

a)

Domain: The price, x, of sunscreen cannot be negative and the number, D, of bottles sold cannot be negative. The domain is approximately $\{x \in \mathbb{R}, 0 \leq x \leq 9.923\}$.
b)

22000 bottles per month are sold when the price is $\$ 5$ per bottle.
c) On your graph, sketch the line $y=172$ and find the points of intersection.

$x=3$ or $x=8$; If the selling price is $\$ 3$ per bottle or $\$ 8$ per bottle, then 17200 bottles of sunscreen will be sold per month.

Chapter 2 Section 3

Question 17 Page 112

a)

$$
\begin{aligned}
2(x-1)^{3} & =16 & & \\
\left(x^{2}-2 x+1\right)(x-1) & =8 & & \text { Divide both sides by } 2 . \\
x^{3}-x^{2}-2 x^{2}+2 x+x-1 & =8 & & \text { Expand. } \\
x^{3}-3 x^{2}+3 x-9 & =0 & & \text { Collect like terms. } \\
x^{2}(x-3)+3(x-3) & =0 & & \text { Factor by grouping. } \\
\left(x^{2}+3\right)(x-3) & =0 & & \\
x & =3 & &
\end{aligned}
$$

Equation could also be solved by factoring difference of cubes.

$$
\begin{aligned}
2(x-1)^{3} & =16 & & \\
(x-1)^{3}-8 & =0 & & \text { Divide both sides by } 2 . \\
{[(x-1)-2]\left[(x-1)^{2}+2(x-1)+4\right] } & =0 & & \text { Factor the difference of cubes. } \\
(x-3)\left(x^{2}-2 x+1+2 x-2+4\right) & =0 & & \text { Expand and add like terms. } \\
(x-3)\left(x^{2}+3\right) & =0 & & \\
x & =3 & &
\end{aligned}
$$

b) $\quad 2\left(x^{2}-4 x\right)^{2}-5\left(x^{2}-4 x\right)=3$
$2\left(x^{2}-4 x\right)^{2}-5\left(x^{2}-4 x\right)-3=0$
Let $m=x^{2}-4 x$.

$$
\begin{aligned}
& 2 m^{2}-5 m-3=0 \\
& (m-3)(2 m+1)=0 \\
& m=3 \text { or } m=-\frac{1}{2}
\end{aligned}
$$

Substitute $x^{2}-4 x$ back in for m.

$$
\begin{aligned}
& x^{2}-4 x=3 \quad \text { or } \\
& x^{2}-4 x-3=0 \quad x^{2}-4 x=-\frac{1}{2} \\
& x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-3)}}{2(1)} \quad x=\frac{8 \pm \sqrt{(-8)^{2}-4(2)(1)}}{2(2)} \\
& x=\frac{4 \pm \sqrt{28}}{2} \\
& x \doteq 4.6 \text { or } x \doteq-0.6 \text { or } x \doteq 3.9 \text { or } x \doteq 0.1
\end{aligned} \quad \text { Multiply by } 2 .
$$

Chapter 2 Section 3

Question 18 Page 112

a)

$$
\begin{aligned}
2 x^{3}+(k+1) x^{2} & =4-x^{2} \\
2 x^{3}+(k+1) x^{2}-4+x^{2} & =0 \\
2(-2)^{3}+(k+1)(-2)^{2}-4+(-2)^{2} & =0 \\
-16+4 k+4-4+4 & =0 \\
4 k & =12 \\
k & =3
\end{aligned}
$$

b) $2 x^{3}+(k+1) x^{2}-4+x^{2}=0$
$2 x^{3}+(3+1) x^{2}-4+x^{2}=0$

$$
2 x^{3}+5 x^{2}-4=0
$$

Since -2 is a root of the equation, $(x+2)$ is a factor.
Divide to determine the other factors.

$$
\begin{aligned}
& x + 2 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } + 0 x - 4 } \begin{array} { r }
{ \frac { 2 x ^ { 3 } + 4 x ^ { 2 } } { x ^ { 2 } } + 0 x } \\
{ \frac { x ^ { 2 } + 2 x } { - 2 x - 4 } } \\
{ \frac { - 2 x - 4 } { 0 } }
\end{array} \\
& (x+2)\left(2 x^{2}+x-2\right)=0 \\
& x=-2
\end{aligned} \begin{aligned}
& \text { or } \\
& x=\frac{-1 \pm \sqrt{(1)^{2}-4(2)(-2)}}{2(2)} \\
& x=\frac{-1 \pm \sqrt{17}}{4} \\
& x \doteq 2 \text { or } x \doteq-1.3 \text { or } x \doteq 0.8
\end{aligned}
$$

Chapter 2 Section 3

Question 19 Page 112

$$
\begin{aligned}
& \text { length }=(32-2 x) \\
& \text { width }=(28-2 x) \\
& \text { height }=x \\
& V(x)=(32-2 x)(28-2 x) x \\
& 1920=4 x^{3}-120 x^{2}+896 x \\
& 0=4 x^{3}-120 x^{2}+896 x-1920 \\
& 0=4\left(x^{3}-30 x^{2}+224 x-480\right) \\
& V(4)=(4)^{3}-30(4)^{2}+224(4)-480 \\
& =64-480+896-480 \\
& =0
\end{aligned}
$$

Since $x=4$ is a zero of $V(x),(x-4)$ is a factor.

Divide to determine the other factors.

-4	1	-30	224	-480
-		-4	104	-480
\times	1	-26	120	0

$$
\begin{array}{r}
(x-4)\left(x^{2}-26 x+120\right)=0 \\
(x-4)(x-6)(x-20)=0
\end{array}
$$

If $x=4$	If $x=6$	If $x=20$
length $=24$	length $=20$	length $=-8$; cannot have negative length
width $=20$	width $=16$	
height $=4$	height $=6$	

The dimensions of the boxes are 24 cm by 20 cm by 4 cm or 20 cm by 16 cm by 6 cm .

Chapter 2 Section 3

Question 20 Page 112

 $x=3$
or

$$
x=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(9)}}{2(1)}
$$

$$
x=\frac{-3 \pm \sqrt{-27}}{2}
$$

$$
x=\frac{-3 \pm \sqrt{(-1) 3 \times 9}}{2}
$$

$$
x=\frac{-3 \pm \sqrt{-1} \times \sqrt{3} \times \sqrt{9}}{2}
$$

$$
x=\frac{-3 \pm 3 i \sqrt{3}}{2}
$$

$$
x=\frac{-3+3 i \sqrt{3}}{2} \text { or } x=\frac{-3-3 i \sqrt{3}}{2}
$$

$$
x=3 \text { or } x=\frac{-3+3 i \sqrt{3}}{2} \text { or } x=\frac{-3-3 i \sqrt{3}}{2}
$$

b) $0=[x-(3+i)][x-(3-i)](x+4)$
$=\left[x^{2}-(3-i) x-(3+i) x+(3-i)(3+i)\right](x+4)$
$=\left[x^{2}-3 x+i-3 x-i+9+3 i-3 i-i^{2}\right](x+4)$
$=\left[x^{2}-6 x+9-(-1)\right](x+4)$
$=\left(x^{2}-6 x+10\right)(x+4)$
$=x^{3}+4 x^{2}-6 x^{2}-24 x+10 x+40$
$=x^{3}-2 x^{2}-14 x+40$
This equation is not unique since any multiple of it would have the same roots (e.g., $2 x^{3}-4 x^{2}-28 x+80=0$).

Chapter 2 Section 3

Question 21 Page 112

$$
\left.\begin{array}{rl}
V(x) & =x(x+1)(x+2) \\
(x+1)(x+1+2)(x+2+3) & =x(x+1)(x+2)+456 \\
(x+1)(x+3)(x+5) & =x\left(x^{2}+3 x+2\right)+456 \\
\left(x^{2}+4 x+3\right)(x+5) & =x^{3}+3 x^{2}+2 x+456 \\
x^{3}+5 x^{2}+4 x^{2}+20 x+3 x+15 & =x^{3}+3 x^{2}+2 x+456 \\
x^{3}-x^{3}+9 x^{2}-3 x^{2}+23 x-2 x+15-456 & =0 \\
6 x^{2}+21 x-441 & =0 \\
3\left(2 x^{2}+7 x-147\right) & =0 \\
3(2 x+21)(x-7) & =0 \\
x-21
\end{array}\right) \text { or } x=7 \quad \text { Reject the negative root. }
$$

The dimensions of the smaller box are 9 cm by 8 cm by 7 cm . The dimensions of the larger box are 12 cm by 10 cm by 8 cm .

Chapter 2 Section 3

Question 22 Page 112

Use the rational zero theorem to determine the values that should be tested.
Let b represent the factors of the constant term -6 , which are $\pm 1, \pm 2, \pm 3, \pm 6$.
Let a represent the factors of the leading coefficient 6 , which are $\pm 1, \pm 2, \pm 3, \pm 6$.
The possible values of $\frac{b}{a}$ are
$\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{2}{3}, \pm \frac{2}{6}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{3}, \pm \frac{3}{6}, \pm \frac{6}{1}, \pm \frac{6}{2}, \pm \frac{6}{3}, \pm \frac{6}{6}$.
Frit

Since $x=-3$ is a zero of $V(x),(x+3)$ is a factor.
Since $x=-\frac{1}{2}$ is a zero of $V(x),(2 x+1)$ is a factor.
Since $x=\frac{2}{3}$ is a zero of $V(x),(3 x-2)$ is a factor.
$a=-3 ; b=-\frac{1}{2} ; c=\frac{2}{3}$
$a+b=-3+\left(-\frac{1}{2}\right)=-\frac{7}{2} ;(2 x+7)$ is a factor.
$\frac{a}{b}=\frac{-3}{-\frac{1}{2}}=6 ;(x-6)$ is a factor.
$a b=-3\left(-\frac{1}{2}\right)=\frac{3}{2} ;(2 x-3)$ is a factor.
$0=(2 x+7)(x-6)(2 x-3)$
$=\left(2 x^{2}-5 x-42\right)(2 x-3)$
$=4 x^{3}-6 x^{2}-10 x^{2}+15 x-84 x+126$
$=4 x^{3}-16 x^{2}-69 x+126$
or
$=x^{3}-4 x^{2}-\frac{69}{4} x+\frac{63}{2}$

Chapter 2 Section 3

Question 23 Page 112

The diameter of a circle subtends a right triangle to any point on a circle.
Therefore, $\angle \mathrm{APB}=\angle \mathrm{CPB}=90^{\circ}$.
From $\triangle \mathrm{POB}$:

$$
\begin{array}{r}
45+x+2 y=180 \\
x+2 y=135 \tag{1}
\end{array}
$$

From $\triangle \mathrm{POC}$:

$$
\begin{align*}
y+90+2 x & =180 \\
2 x+y & =90 \tag{2}
\end{align*}
$$

Solve for x.
(1) -2 (2)

$$
\begin{aligned}
x+2 y-(4 x+2 y) & =135-180 \\
-3 x & =-45 \\
x & =15
\end{aligned}
$$

$\angle \mathrm{POC}=15^{\circ}$

Chapter 2 Section 3

Question 24 Page 112
Try different values of k.
Through trial and error when $k=5$ the equation has a double root.
$2 x^{3}-9 x^{2}+12 x-5=0$
$(x-1)^{2}(2 x-5)=0$
When $k=4$ the equation has a double root.
$2 x^{3}-9 x^{2}+12 x-4$
$(x-2)^{2}(2 x-1)=0$
When $k=5$ the equation has a double root.
$k=4$ and $k=5$
The product is 20 .

Chapter 2 Section 4

Chapter 2 Section 4

a) The factor associated with -7 is $(x+7)$ and the factor associated with -3 is $(x+3)$.

An equation for this family is $y=k(x+7)(x+3)$, where $k \in \mathbb{R}, k \neq 0$.
b) Answers may vary. A sample solution is shown.

$$
y=2(x+7)(x+3), y=-3(x+7)(x+3)
$$

c) Substitute $x=2$ and $y=18$ into the equation.

$$
\begin{aligned}
18 & =k(2+7)(2+3) \\
18 & =45 k \\
k & =\frac{18}{45} \\
k & =\frac{2}{5} \\
y & =\frac{2}{5}(x+7)(x+3)
\end{aligned}
$$

Chapter 2 Section 4

Question 2 Page 119
C (has different zeros)

Chapter 2 Section 4

Question 3 Page 119
A, B, and D (same zeros)

Chapter 2 Section 4

Question 4 Page 119
A, C, E (zeros are $-3,-2,1$)
B, D, F(zeros are $-1,2,3$)

Chapter 2 Section 4

Question 5 Page 120

a) $y=k(x+5)(x-2)(x-3)$
b) $y=k(x-1)(x-6)(x+3)$
c) $y=k(x+4)(x+1)(x-9)$
d) $y=k x(x+7)(x-2)(x-5)$

Chapter 2 Section 4

Question 6 Page 120

a) A From the graph, the x-intercepts are $-2,1$, and 3 . The corresponding factors are $(x+2),(x-1)$, and $(x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+2)(x-1)(x-3)$.
Select a point that the graph passes through, such as $(0,6)$.
Substitute $x=0$ and $y=6$ into the equation to solve for k.
$6=(2)(-1)(-3) k$
$k=1$
An equation is $y=(x+2)(x-1)(x-3)$.
B From the graph, the x-intercepts are $-2,1$, and 3 . The corresponding factors are $(x+2),(x-1)$, and $(x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+2)(x-1)(x-3)$.
Select a point that the graph passes through, such as $(0,-3)$.
Substitute $x=0$ and $y=-3$ into the equation to solve for k.
$-3=(2)(-1)(-3) k$
$6 k=-3$
$k=-\frac{1}{2}$
An equation is $y=-\frac{1}{2}(x+2)(x-1)(x-3)$.
C From the graph, the x-intercepts are $-2,2$, and 3 . The corresponding factors are $(x+2),(x-2)$, and $(x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+2)(x-2)(x-3)$.
Select a point that the graph passes through, such as $(0,-6)$.
Substitute $x=0$ and $y=-6$ into the equation to solve for k.
$-6=(2)(-2)(-3) k$
$12 k=-6$
$k=-\frac{1}{2}$
An equation is $y=-\frac{1}{2}(x+2)(x-2)(x-3)$.

D From the graph, the x-intercepts are $-2,1$, and 3 . The corresponding factors are $(x+2),(x-1)$, and $(x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+2)(x-1)(x-3)$.
Select a point that the graph passes through, such as $(0,12)$.
Substitute $x=0$ and $y=12$ into the equation to solve for k.
$12=(2)(-1)(-3) k$
$k=2$
An equation is $y=2(x+2)(x-1)(x-3)$.

Chapter 2 Section $4 \quad$ Question 7 Page 120

a) The corresponding factors are $(x+4),(x-2)$, and x.

An equation for the family of polynomial functions with these zeros is $y=k x(x+4)(x-2)$
b) Answers may vary. A sample solution is shown.
$y=x(x+4)(x-2), y=-2 x(x+4)(x-2)$
c) Substitute $x=-2$ and $y=4$ into the equation and solve for k.
$4=k(-2)(-2+4)(-2-2)$
$4=16 k$
$k=\frac{1}{4}$
An equation is $y=\frac{1}{4} x(x+4)(x-2)$.
d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

Question 8 Page 120

a) $y=k(x+2)(x+1)(2 x-1)$
b) Answers may vary. A sample solution is shown.
$y=-(x+2)(x+1)(2 x-1), y=\frac{1}{2}(x+2)(x+1)(2 x-1)$
c) Substitute $x=0$ and $y=6$ and solve for k.
$6=k(2)(1)(-1)$
$k=-3$
An equation is $y=-3(x+2)(x+1)(2 x-1)$.
d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

a) $y=k(x+4)(x+1)(x-2)(x-3)$
b) Answers may vary. A sample solution is shown.

$$
y=2(x+4)(x+1)(x-2)(x-3), y=-3(x+4)(x+1)(x-2)(x-3)
$$

c) Substitute $x=0$ and $y=-4$ and solve for k.
$-4=k(4)(1)(-2)(-3)$
$24 k=-4$
$k=-\frac{1}{6}$
An equation is $y=-\frac{1}{6}(x+4)(x+1)(x-2)(x-3)$.
d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4
Question 10 Page 120
a) $y=k(2 x+5)(x+1)(2 x-7)(x-3)$
b) Answers may vary. A sample solution is shown.

$$
\begin{aligned}
& y=-\frac{1}{2}(2 x+5)(x+1)(2 x-7)(x-3) \\
& y=2(2 x+5)(x+1)(2 x-7)(x-3)
\end{aligned}
$$

c) Substitute $x=-2$ and $y=25$ and solve for k.
$25=k[2(-2)+5](-2+1)[2(-2)-7](-2-3)$
$25=k(1)(-1)(-11)(-5)$
$25=-55 k$
$k=-\frac{5}{11}$
An equation is $y=-\frac{5}{11}(2 x+5)(x+1)(2 x-7)(x-3)$.
d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

Question 11 Page 120
a) The factors are $(x-1+\sqrt{2}),(x-1-\sqrt{2})$ and $(2 x+1)$.

$$
\begin{aligned}
y & =k(x-1+\sqrt{2})(x-1-\sqrt{2})(2 x+1) \\
& =k\left(x^{2}-x-\sqrt{2} x-x+1+\sqrt{2}+\sqrt{2} x-\sqrt{2}-2\right)(2 x+1) \\
& =k\left(x^{2}-2 x-1\right)(2 x+1) \\
& =k\left(2 x^{3}+x^{2}-4 x^{2}-2 x-2 x-1\right) \\
& =k\left(2 x^{3}-3 x^{2}-4 x-1\right)
\end{aligned}
$$

b) Substitute $x=3$ and $y=35$ and solve for k.

$$
\begin{aligned}
35 & =k\left[2(3)^{3}-3(3)^{2}-4(3)-1\right] \\
35 & =k(54-27-12-1) \\
35 & =14 k \\
k & =\frac{5}{2}
\end{aligned}
$$

An equation is $y=\frac{5}{2}\left(2 x^{3}-3 x^{2}-4 x-1\right)$.

Chapter 2 Section 4

Question 12 Page 120

a) $y=k(x-3)^{2}(x+4+\sqrt{3})(x+4-\sqrt{3})$
$=k\left(x^{2}-6 x+9\right)\left(x^{2}+4 x-\sqrt{3} x+4 x+16-4 \sqrt{3}+\sqrt{3} x+4 \sqrt{3}-3\right)$
$=k\left(x^{2}-6 x+9\right)\left(x^{2}+8 x+13\right)$
$=k\left(x^{4}+8 x^{3}+13 x^{2}-6 x^{3}-48 x^{2}-78 x+9 x^{2}+72 x+117\right)$
$=k\left(x^{4}+2 x^{3}-26 x^{2}-6 x+117\right)$
b) Substitute $x=1$ and $y=-22$ and solve for k.

$$
\begin{aligned}
-22 & =k\left[1^{4}+2(1)^{3}-26(1)^{2}-6(1)+117\right] \\
-22 & =k(88) \\
k & =-\frac{1}{4}
\end{aligned}
$$

An equation is $y=-\frac{1}{4}\left(x^{4}+2 x^{3}-26 x^{2}-6 x+117\right)$.

Chapter 2 Section 4

Question 13 Page 120

a) $y=k(x+1-\sqrt{5})(x+1+\sqrt{5})(x-2+\sqrt{2})(x-2-\sqrt{2})$
$=k\left(x^{2}+x+\sqrt{5} x+x+1+\sqrt{5}-\sqrt{5} x-\sqrt{5}-5\right) \times$
$\left(x^{2}-2 x-\sqrt{2} x-2 x+4+2 \sqrt{2}+\sqrt{2} x-2 \sqrt{2}-2\right)$
$=k\left(x^{2}+2 x-4\right)\left(x^{2}-4 x+2\right)$
$=k\left(x^{4}-4 x^{3}+2 x^{2}+2 x^{3}-8 x^{2}+4 x-4 x^{2}+16 x-8\right)$
$=k\left(x^{4}-2 x^{3}-10 x^{2}+20 x-8\right)$
b) Substitute $x=0$ and $y=-32$ and solve for k.

$$
\begin{aligned}
-32 & =k(-8) \\
k & =4
\end{aligned}
$$

An equation is $y=4\left(x^{4}-2 x^{3}-10 x^{2}+20 x-8\right)$.

Chapter 2 Section 4

Question 14 Page 120

From the graph, the x-intercepts are $-2,1$, and 3 . The corresponding factors are $(x+2)$, $(x-1)$, and $(x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+2)(x-1)(x-3)$.
The y-intercept is -12 .
Substitute $x=0$ and $y=-12$ and solve for k.
$-12=k(2)(-1)(-3)$
$k=-2$
An equation is $y=-2(x+2)(x-1)(x-3)$.

Chapter 2 Section 4

From the graph, the x-intercepts are -3 (order 2), 1, and $\frac{3}{2}$.
The corresponding factors are $(x+3)^{2},(x-1)$, and $(2 x-3)$.
An equation for the family of polynomial functions with these zeros is $y=k(x+3)^{2}(x-1)(2 x-3)$.
The y-intercept is 27 .
Substitute $x=0$ and $y=27$ and solve for k.
$27=k(3)^{2}(-1)(-3)$
$27=27 k$
$k=1$
An equation is $y=(x+3)^{2}(x-1)(2 x-3)$.

Chapter 2 Section 4

Question 16 Page 121

From the graph, the x-intercepts are $-\frac{7}{2},-2,0$, and 1 . The corresponding factors are x, $(2 x+7),(x+2)$, and $(x-1)$.
An equation for the family of polynomial functions with these zeros is $y=k x(2 x+7)(x+2)(x-1)$.
The graph passes through $\left(-\frac{3}{2},-15\right)$.
Substitute $x=-\frac{3}{2}$ and $y=-15$ and solve for k.
$-15=k\left(-\frac{3}{2}\right)\left[2\left(-\frac{3}{2}\right)+7\right]\left(-\frac{3}{2}+2\right)\left(-\frac{3}{2}-1\right)$
$-15=k\left(-\frac{3}{2}\right)(4)\left(\frac{1}{2}\right)\left(-\frac{5}{2}\right)$
$-15=\frac{15}{2} k$
$k=-2$
An equation is $y=-2 x(2 x+7)(x+2)(x-1)$.

Chapter 2 Section 4

Question 17 Page 121
Set A: no; the zeros are different
$y=(3 x+1)(2 x-1)(x+3)(x-2)$

$$
y=2(3 x+1)(2 x-1)(x+3)(x-2)+1
$$

$y=3(3 x+1)(2 x-1)(x+3)(x-2)+2 \quad y=4(3 x+1)(2 x-1)(x+3)(x-2)+3$

Set B: yes; the zeros are the same
$y=(3 x+1)(2 x-1)(x+3)(x-2) \quad y=(3 x+1)(4 x-2)(x+3)(x-2)$

$y=3(3 x+1)(1-2 x)(x+3)(x-2)$

$$
y=4(3 x+1)(2 x-1)(x+3)(6-3 x)
$$

Chapter 2 Section 4

Question 18 Page 121
a) height $=x$
width $=30-x$
length $=48-2 x$

$$
V(x)=x(48-2 x)(30-x)
$$

b) $\quad x(48-2 x)(30-x)=2300$
$x\left(1440-48 x-60 x+2 x^{2}\right)=2300$
$2 x^{3}-108 x^{2}+1440 x-2300=0$
$2\left(x^{3}-54 x^{2}+720 x-1150\right)=0$
Using the integral zero theorem test the values $\pm 1, \pm 2, \pm 5, \pm 10, \pm 23, \pm 25, \pm 46, \pm 50, \pm 115$, $\pm 230, \pm 575, \pm 1150$.
These values do not work.
Factor using CAS on approximate mode.

$2(x-33.5765)(x-18.5801)(x-1.84337)=0$
$x \doteq 33.6$ or $x \doteq 18.6$ or $x \doteq 1.84$
height $=33.6$
width $=-3.6$
length $=-19.2$
Disregard the negative dimensions.

$$
\begin{array}{ll}
\text { height } \doteq 18.6 & \text { height } \doteq 1.84 \\
\text { width } \doteq 11.4 & \text { width } \doteq 28.16 \\
\text { length } \doteq 10.8 & \text { length } \doteq 44.31
\end{array}
$$

The possible dimensions of the box are approximately 44.31 cm by 28.16 cm by 1.84 cm or 18.6 cm by 11.4 cm by 10.8 cm .
c) volume doubles; volume triples; family of functions with zeros $24,30,0$
d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

Question 19 Page 121
$y=k x(x-30)(x-60)(x-90)(x-120)(x-150)$

Chapter 2 Section 4

Question 20 Page 122
a) height $=x$
width $=24-2 x$
length $=36-2 x$
$V(x)=x(36-2 x)(24-2 x)$
b) i) $\quad V(x)=2 x(36-2 x)(24-2 x)$
ii) $V(x)=3 x(36-2 x)(24-2 x)$
c) Family of functions with the same zeros: 0,12 , and 18 .
d) Note that the domain and range are greater or equal to zero.

e) $\quad x(36-2 x)(24-2 x)=1820$

$$
x\left(864-120 x+4 x^{2}\right)-1820=0
$$

$$
4 x^{3}-120 x^{2}+864 x-1820=0
$$

$$
4\left(x^{3}-30 x^{2}+216 x-455\right)=0
$$

$$
P(x)=x^{3}-30 x^{2}+216 x-455
$$

$$
P(5)=(5)^{3}-30(5)^{2}+216(5)-455
$$

$$
=125-750+1080-455
$$

$$
=0
$$

Since 5 is a zero of the equation, $(x-5)$ is a factor. Divide to determine the other factors.

| -5 |
| :--- | | -30 | 216 | -455 | |
| ---: | ---: | ---: | ---: |
| \times | -5 | 125 | -455 |
| | -25 | 91 | 0 |
| $(x-5)\left(x^{2}-25 x+91\right)=0$ | | | |
| $x=5$ | | | |\quad| or |
| :--- |
| $x=\frac{25 \pm \sqrt{(-25)^{2}-4(1)(91)}}{2(1)}$ |
| $x=\frac{25 \pm \sqrt{261}}{2}$ |
| $x \doteq 20.58$ or $x \doteq 4.42$ |

$$
\begin{array}{lll}
\text { height }=5 & \text { height } \doteq 20.58 & \text { height } \doteq 4.42 \\
\text { width }=14 & \text { width } \doteq-17.16 & \text { width } \doteq 15.16 \\
\text { length }=26 & \text { length } \doteq-5.16 & \text { length } \doteq 27.16
\end{array}
$$

Disregard the negative dimensions.
The possible dimensions of the box are approximately 27.16 cm by 15.16 cm by 4.42 cm or 26 cm by 14 cm by 5 cm .

Chapter 2 Section 4

Question 21 Page 122

Solutions to Achievement Check questions are provided in the Teacher's Resource.

Chapter 2 Section 4

a) Answers may vary. A sample solution is shown.

$$
y=k(3 x-2)(x-5)(x+3)(x+2)
$$

b) 4
c) Answers may vary. A sample solution is shown.

Substitute $x=-1$ and $y=-96$ and solve for k.

$$
-96=k[3(-1)-2](-1-5)(-1+3)(-1+2)
$$

$$
-96=k(-5)(-6)(2)(1)
$$

$$
-96=60 k
$$

$$
k=-\frac{8}{5}
$$

An equation is $y=-\frac{8}{5}(3 x-2)(x-5)(x+3)(x+2)$.
d) Answers may vary. A sample solution is shown.

$$
y=\frac{8}{5}(3 x-2)(x-5)(x+3)(x+2)
$$

Chapter 2 Section 4

Question 23 Page 122
Answers may vary. A sample solution is shown.

Chapter 2 Section 4

chord $=2 \sqrt{r^{2}-d^{2}}$
$=2 \sqrt{15^{2}-9^{2}}$
$=2 \sqrt{144}$
$=2(12)$

$$
=24
$$

The length of the chord is 24 cm .

Chapter 2 Section 4

Question 25 Page 122

$$
\begin{aligned}
g\left(x^{2}+2\right) & =x^{4}+5 x^{2}+3 \\
& =x^{4}+4 x^{2}+x^{2}+4-1 \\
& =\left(x^{4}+4 x^{2}+4\right)+x^{2}-1 \\
& =\left(x^{2}+2\right)^{2}+\left(x^{2}+2\right)-3 \quad \text { Factor } x^{4}+4 x^{2}+4
\end{aligned}
$$

We have that $g(x)=x^{2}+x-3$.

$$
\begin{aligned}
g\left(x^{2}-1\right) & =\left(x^{2}-1\right)^{2}+\left(x^{2}-1\right)-3 \\
& =x^{4}-2 x^{2}+1+x^{2}-4 \\
& =x^{4}-x^{2}-3 \\
g\left(x^{2}-1\right) & =x^{4}-x^{2}-3
\end{aligned}
$$

Chapter 2 Section 5

Chapter 2 Section 5
a) $-7<x \leq-1$
b) $-2<x \leq 6$
c) $x<-3, x \geq 4$
d) $x \leq-1, x \geq 1$

Chapter 2 Section 5

a) $x<-1,-1<x<5, x>5$
b) $x<-7,-7<x<0,0<x<2, x>2$
c) $x<-6,-6<x<0,0<x<1, x>1$

Solve Inequalities Using Technology
Question 1 Page 129

Question 2 Page 129

Chapter 2 Section 5

Chapter 2 Section 5
a) $f(x)>0$ when $x<-2$ or $1<x<6$
b) $f(x)<0$ when $-3.6<x<0$ or $x>4.7$
d) $x<-4,-4<x<-2,-2<x<\frac{2}{5}, \frac{2}{5}<x<4.3, x>4.3$

Question 4 Page 129

Chapter 2 Section 5

Question 5 Page 130

a) i) The x-intercepts are -6 and 3 .
ii) $f(x)>0$ when $-6<x<3$
iii) $f(x)<0$ when $x<-6, x>3$
b) i) The x-intercepts are -2 and 5 .
ii) $f(x)>0$ when $x<-2, x>5$
iii) $f(x)<0$ when $-2<x<5$
c) i) The x-intercepts are $-4,3$, and 5 .
ii) $f(x)>0$ when $-4<x<3, x>5$
iii) $f(x)<0$ when $x<-4,3<x<5$
d) i) The x-intercepts are -4 and 1 .
ii) $f(x)>0$ when $x<-4$
iii) $f(x)<0$ when $-4<x<1, x>1$

Chapter 2 Section 5

Question 6 Page 130
a)

The values that satisfy the inequality $x^{2}-x-12<0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when $-3<x<4$.
b)

The values that satisfy the inequality $x^{2}+8 x+15 \leq 0$ are the values of x for which the graph is zero or negative (on or below the x-axis). From the graph, this occurs when $-5 \leq x \leq-3$.
c)

The values that satisfy the inequality $x^{3}-6 x^{2}+11 x-6>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when $1<x<2, x>3$.
d)

The values that satisfy the inequality $x^{3}+8 x^{2}+19 x+12 \geq 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs when $-4 \leq x \leq-3, x \geq-1$
e)

The values that satisfy the inequality $x^{3}-2 x^{2}-9 x+18<0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when $x<-3,2<x<3$.
f)

The values that satisfy the inequality $x^{3}+x^{2}-16 x-16 \leq 0$ are the values of x for which the graph is zero or negative (on or below the x-axis). From the graph, this occurs when $x \leq-4$, $-1 \leq x \leq 4$.

Chapter 2 Section 5

Question 7 Page 130
a)

$x \leq-4$ or $x \geq 0.5$
b)

c)

$x \leq-4$ or $-2 \leq x \leq 1$
d)

$-5<x<-1$ or $x>4$
e)

$x<-5$ or $-2<x<7$
f)

$x \leq 7$

Chapter 2 Section 5

Question 8 Page 130

a)

$\begin{aligned} & \text { NewProb } \\ & \text { solve }\left(x^{2}+4 \cdot x-3=0, x\right) \end{aligned}$	
solve ($\mathrm{x}^{\wedge} 2+4 \mathrm{x}-3-3=0, \mathrm{x}$)	

The roots are approximately -4.65 and 0.65 .
The intervals are $x<-4.65,-4.65<x<0.65$, and $x>0.65$.
For $x<-4.65$, test $x=-5$.

For $-4.65<x<0.65$, test $x=0$.

For $x>0.65$, test 1 .

The solution is $-4.65<x<0.65$ since the inequality is true for the values tested in this interval.
b)

The roots are -2.43 and 1.10 .
The intervals are $x<-2.43,-2.43<x<1.10$, and $x>1.10$.
For $x<-2.43$, test $x=-5$.

For $-2.43<x<1.10$, test 0 .

For $x>1.10$, test $x=2$.

The solution is $-2.43<x<1.10$ since the inequality is true for the value tested in this interval.
c)

The roots are approximately $-2.17,-0.31$, and 1.48 .
The intervals are $x<-2.17,-2.17<x<-0.31,-0.31<x<1.48$, and $x>1.48$.
For $x<-2.17$, test $x=-3$.

For $-2.17<x<-0.31$, test $x=-1$.

For $-0.31<x<1.48$, test $x=1$.

For $x>1.48$, test $x=5$.

$+x^{2}-3 \cdot x-1 \leq 0 \mid x=1$	
$\frac{01 x=5}{810)}$	

The solution is $x \leq-2.17$ or $-0.31 \leq x \leq 1.48$, since the inequality is true for the values tested in these intervals.
$x \leq-2.17$ or $-0.31 \leq x \leq 1.48$
d)

The roots are $-2.12,-0.43$, and 0.55 .
The intervals are $x<-2.12,-2.12<x<-0.43,-0.43<x<0.55$, and $x>0.55$.
For $x<-2.12$, test $x=-10$.

For $-2.12<x<-0.43$, test $x=-1$.

$-0.43<x<0.55$, test $x=0$.

$x>0.55$, test $x=10$.

The solution is $-2.12 \leq x \leq-0.43$ or $x \geq 0.55$, since the inequality is true for the values tested in these intervals.
e)

The roots are $-1.93,-0.48$, and 1.08 .
The intervals are $x<-1.93,-1.93<x<-0.48,-0.48<x<1.08$, and $x>1.08$.
$x<-1.93$, test $x=-2$.

$-1.93<x<-0.48$, test $x=-1$.

$-0.48<x<1.08$, test $x=0$.

$x>1.08$, test $x=2$.

The solution is $x<-1.93$ or $-0.48<x<1.08$, since the inequality is true for the values tested in these intervals.
f)

The roots are -1.34 and 1.25 .
The intervals are $x<-1.34,-1.34<x<1.25$, and $x>1.25$.
$x<-1.34$, test $x=-3$

$-1.34<x<1.25$, test $x=0$.

$x>1.25$, test $x=4$.

The solution is $-1.34 \leq x \leq 1.25$, since the inequality is true for the value tested in this interval.

Chapter 2 Section 5

Question 9 Page 130
a)

The values that satisfy the inequality $5 x^{3}-7 x^{2}-x+4>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs approximately when $x>-0.67$.
b)

The values that satisfy the inequality $-x^{3}+28 x+48 \geq 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs when $x \leq-4$ or $-2 \leq x \leq 6$.
c)

The values that satisfy the inequality $3 x^{3}+4 x^{2}-35 x-12 \leq 0$ are the values of x for which the graph is zero or negative (on or below the x -axis). From the graph, this occurs when $x \leq-4$ or $-\frac{1}{3} \leq x \leq 3$.
d)

The values that satisfy the inequality $3 x^{3}+2 x^{2}-11 x-10<0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when
$x<-\frac{5}{3}$ or $-1<x<2$.
e)

The values that satisfy the inequality $-2 x^{3}+x^{2}+13 x+6>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when $x<-2$ or $-\frac{1}{2}<x<3$.
f)

The values that satisfy the inequality $2 x^{4}+x^{3}-26 x 2-37 x-12>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when $x<-3$ or $-1<x<-\frac{1}{2}$ or $x>4$.

Chapter 2 Section 5

Question 10 Page 131

The height of the ball is greater than 15 m approximately when $0.50<t<6.03$, or between about 0.5 s and 6.03 s .

Chapter 2 Section 5

a)

Question 11 Page 131

The tent caterpillar population was greater than 10000 approximately when $2.73<t<5.51$, or between later in the second week and halfway through the fifth week.
b)

There are no tent caterpillars left.

Chapter 2 Section 5

Question 12 Page 131

a) Write the inequality as $0.1 t^{3}-2 t+8<8$

$$
\begin{array}{r}
0.1 t^{3}-2 t+8-8<0 \\
0.1 t^{3}-2 t<0
\end{array}
$$

Graph the function $y=0.1 t^{3}-2 t$

There are fewer than 8000 on-line customers between 0 and approximately 4.47 years.
b) Write the inequality as $0.1 t^{3}-2 t+8>10$

$$
\begin{aligned}
0.1 t^{3}-2 t+8-10 & >0 \\
0.1 t^{3}-2 t-2 & >0
\end{aligned}
$$

Graph the function $y=0.1 t^{3}-2 t-2$

The number of on-line customers exceeds 10000 after approximately 4.91 years.

Chapter 2 Section 5

Question 13 Page 131
Answers may vary. A sample solution is shown.
a) i) $(x-1)\left(x^{2}+1\right)>0$ or $x^{3}-x^{2}+x-1$
ii) $x(x-1)^{2}>0$ or $x^{3}-2 x^{2}+x$
iii) $x(x-1)^{2}>0$ or $x^{3}-2 x^{2}+x$
b) i) $x>1$
ii) $0<x<1, x>1$
iii) $0<x<1, x>1$

Chapter 2 Section 5

Question 14 Page 131
Answers may vary. A sample solution is shown.
a) i) $\left(x^{2}+1\right)\left(x^{2}+3\right)>0$ or $x^{4}+4 x^{2}+3$
ii) $x^{2}(x-1)^{2}>0$ or $x^{4}-2 x^{3}+x^{2}$
iii) $x^{2}(x-1)(x+1)>0$ or $x^{4}-x^{2}$
iv) $x^{2}(x-1)^{2}>0$ or $x^{4}-2 x^{3}+x^{2}$
b) i) $x \in \mathbb{R}$
ii) $x<0,0<x<1, x>1$
iii) $x<0, x>1$
iv) $x<0,0<x<1, x>1$

Chapter 2 Section 5

Question 15 Page 131
Answers may vary. A sample solution is shown.
a) $(3 x+2)(5 x-4)(2 x-7)>0,-30 x^{3}-109 x^{2}-2 x-56<0$
b) $x^{3}-2 x^{2}-10 x+8>0,-x^{3}+2 x^{2}+10 x-8<0$

Chapter 2 Section 5
Question 16 Page 131
$3 x^{4}-6 x^{4}+5 x^{3}+2 x^{2}+x^{2}-4 x+9 x+6-2 \geq 0$
$-3 x^{4}+5 x^{3}+3 x^{2}+5 x+4 \geq 0$

The equality is satisfied for approximately $-0.66 \leq x \leq 2.45$.

Chapter 2 Section 5

a) Graph the function.

or
Domain

$$
\{x \in \mathbb{R},-1 \leq x \leq 0\},\left\{y \in \mathbb{R}, 0 \leq y \leq \frac{1}{2}\right\}
$$

b) Domain

Range

$\{x \in \mathbb{R}, x<-1, x>1\},\{y \in \mathbb{R}, y>0\}$

Chapter 2 Section 5

Question 18 Page 131
$\mathrm{PQ}=\mathrm{PR}$ (both tangents to the circle from the same point)
$\mathrm{QO}=\mathrm{RO}$ (radius of the circle)
$\mathrm{PO}=\mathrm{PO}$ (common)
Therefore, $\triangle \mathrm{PQO} \cong \triangle \mathrm{PRO}$ and $\angle \mathrm{POQ}=\angle \mathrm{POR}$
Chapter 2 Section 5

$$
\begin{aligned}
f\left(\frac{5}{3}\right) & =k\left(\frac{5}{3}\right)^{2}-b\left(\frac{5}{3}\right)+k \\
0 & =\frac{25}{9} k-\frac{5}{3} b+k \\
0 & =\left(\frac{25}{9}+1\right) k-\frac{5}{3} b \\
\frac{34}{9} k & =\frac{15}{9} b \\
34 k & =15 b \\
\frac{k}{b} & =\frac{15}{34} \\
k & : b=15: 34
\end{aligned}
$$

Chapter 2 Section 5

Question 20 Page 131

$$
\begin{aligned}
& (\mathrm{PR})^{2}=4^{2}+(\mathrm{RS})^{2} \\
& (\mathrm{QR})^{2}=6^{2}+(\mathrm{RS})^{2}
\end{aligned}
$$

$$
\begin{aligned}
10^{2} & =(\mathrm{PR})^{2}+(\mathrm{QR})^{2} \\
10^{2} & =\left(4^{2}+(\mathrm{RS})^{2}\right)+\left(6^{2}+(\mathrm{RS})^{2}\right) \\
100 & =16+(\mathrm{RS})^{2}+36+(\mathrm{RS})^{2} \\
48 & =2(\mathrm{RS})^{2} \\
24 & =(\mathrm{RS})^{2} \\
\sqrt{24} & =\mathrm{RS} \\
2 \sqrt{6} & =\mathrm{RS}
\end{aligned}
$$

The exact length of RS is $2 \sqrt{6}$.

Chapter 2 Section 6

Chapter 2 Section 6

Solve Factorable Polynomial Inequalities Algebraically

Question 1 Page 138

a) $x \leq 5-3$
$x \leq 2$

b) $2 x>-4-1$

$$
x>-\frac{5}{2}
$$

c) $\begin{aligned} & -3 x \geq 6-5 \\ & -3 x \geq 1\end{aligned}$

d) $7 x-3 x<4$

$$
4 x<4
$$

$$
x<1
$$

е) $2-20>5 x+4 x$
$-18>9 x$
$-2>x$
$x<-2$

f) $2-2 x \leq x-8$
$2+8 \leq x+2 x$
$10 \leq 3 x$
$\frac{10}{3} \leq x$
$x \geq \frac{10}{3}$

Chapter 2 Section 6

Question 2 Page 138
a) $x<-2$ or $x>4$

b) $x \leq-\frac{3}{2}$ or $x \geq 4$

Chapter 2 Section 6

Question 3 Page 138

a) $x<-3$ or $x>2$

b) $6 \leq x \leq 9$

c) $-\frac{1}{4} \leq x \leq 2$

Chapter 2 Section 6

Question 4 Page 138

a) Consider all cases.

Case 1
$x+2>0 \quad 3-x>0 \quad x+1<0$
$x>-2 \quad x<3 \quad x<-1$
$-2<x<-1$ is a solution.
Case 2
$x+2>0 \quad 3-x<0 \quad x+1>0$
$x>-2 \quad x>3 \quad x>-1$
$x>3$ is a solution.
Case 3
$x+2<0 \quad 3-x>0 \quad x+1>0$

$$
x<-2 \quad x<3
$$

No solution since no x-values common to all three inequalities.
Case 4
$x+2<0$

$$
3-x<0
$$

$$
x+1<0
$$

$$
x<-2 \quad x>3 \quad x<-1
$$

No solution since no x-values common to all three inequalities.
Combining the results of all the cases, the solution is $-2<x<-1$ or $x>3$.
b) Consider all cases.

Case 1

$$
\begin{array}{rrrr}
-x+1 & \geq 0 & 3 x-1 & \geq 0 \\
1 & x+7 \geq 0 \\
x & 3 x & \geq 1 & x \geq-7 \\
& x & & \\
\frac{1}{3} \leq x & \leq 1 \text { is a solution. } & \\
&
\end{array}
$$

Case 2

$$
\begin{array}{rrrr}
-x+1 & \geq 0 & 3 x-1 & \leq 0 \\
x & x+7 & \leq 0 \\
x & x & \leq \frac{1}{3} & x
\end{array}
$$

$x \leq-7$ is a solution.

Case 3

$$
\begin{array}{rlrr}
-x+1 & \leq 0 & 3 x-1 & \geq 0 \\
x+7 & \leq 0 \\
x & x & \geq \frac{1}{3} & x \leq-7
\end{array}
$$

No solution since no x-values common to all three inequalities.
Case 4

$$
\begin{aligned}
& -x+1 \leq 0 \quad 3 x-1 \leq 0 \quad x+7 \geq 0 \\
& x \geq 1 \quad x \leq \frac{1}{3} \quad x \geq-7
\end{aligned}
$$

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $x \leq-7$ or $\frac{1}{3} \leq x \leq 1$.
c) Consider all cases.

Case 1

$$
\begin{aligned}
& 7 x+2>0 \quad 1-x>0 \quad 2 x+5>0 \\
& 7 x>-2 \quad 1>x \quad 2 x>-5 \\
& x>-\frac{2}{7} \quad x<1 \quad x>-\frac{5}{2} \\
& -\frac{2}{7}<x<1 \text { is a solution. }
\end{aligned}
$$

Case 2

$$
\begin{array}{rlrrl}
7 x+2 & >0 & 1-x<0 & 2 x+5 & <0 \\
x & >-\frac{2}{7} & x>1 & x & <-\frac{5}{2}
\end{array}
$$

No solution since no x-values common to all three inequalities.

Case 3

$$
\begin{array}{rlrrl}
7 x+2 & <0 & 1-x<0 & 2 x+5 & >0 \\
x & <-\frac{2}{7} & x>1 & x & >-\frac{5}{2}
\end{array}
$$

No solution since no x-values common to all three inequalities.

Case 4

$$
\begin{array}{lrr}
7 x+2<0 & 1-x>0 & 2 x+5<0 \\
x<-\frac{2}{7} & x<1 & x<-\frac{5}{2} \\
x<-\frac{5}{2} & \text { is a solution. }
\end{array}
$$

Combining the results of all the cases, the solution is $x<-\frac{5}{2}$ or $-\frac{2}{7}<x<1$.
d) Consider all cases.

Case 1

$$
\left.\begin{array}{rlrl}
x+4 & \leq 0 & -3 x+1 & \leq 0 \\
x+2 & \leq 0 \\
x \leq-4 & -3 x & \leq-1 & x
\end{array}\right)
$$

No solution since no x-values common to all three inequalities.
Case 2
$x+4 \geq 0 \quad-3 x+1 \geq 0 \quad x+2 \leq 0$

$$
x \geq-4 \quad x \leq \frac{1}{3} \quad x \leq-2
$$

$-4 \leq x \leq-2$ is a solution.

Case 3

$x+4 \geq 0 \quad-3 x+1 \leq 0 \quad x+2 \geq 0$
$x \geq-4 \quad x \geq \frac{1}{3} \quad x \geq-2$
$x \geq \frac{1}{3}$ is a solution.

Case 4

$$
\begin{array}{rlrl}
x+4 & \leq 0 & -3 x+1 & \geq 0 \\
x & x+2 & \geq 0 \\
x & \leq-4 & x & \leq \frac{1}{3}
\end{array}
$$

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $-4 \leq x \leq-2$ or $x \geq \frac{1}{3}$.

Chapter 2 Section 6

Question 5 Page 139
a) $(x-3)(x-5) \geq 0$

Consider all cases.
Case 1
$x-3 \geq 0 \quad x-5 \geq 0$

$$
x \geq 3 \quad x \geq 5
$$

Solution is $x \geq 5$.
Case 2
$x-3 \leq 0 \quad x-5 \leq 0$

$$
x \leq 3 \quad x \leq 5
$$

Solution is $x \leq 3$.
Combining the results of all the cases, the solution is $x \leq 3$ or $x \geq 5$.

b) $(x-5)(x+3)<0$

Consider all cases.
Case 1
$x-5<0 \quad x+3>0$

$$
x<5 \quad x>-3
$$

Solution is $-3<x<5$.
Case 2
$x-5>0 \quad x+3<0$

$$
x>5 \quad x<-3
$$

No solution since no x-values common to both inequalities.
Combining the results of all the cases, the solution is $-3<x<5$.

c) $(3 x-4)(5 x+2) \leq 0$

Consider all cases.
Case 1
$\begin{array}{rlrl}3 x-4 & \leq 0 & 5 x+2 & \geq 0 \\ 3 x & \leq 4 & 5 x & \geq-2 \\ x & \leq \frac{4}{3} & x & \geq-\frac{2}{5}\end{array}$
Solution is $-\frac{2}{5} \leq x \leq \frac{4}{3}$.
Case 2
$3 x-4 \geq 0 \quad 5 x+2 \leq 0$
$x \geq \frac{4}{3} \quad x \leq-\frac{2}{5}$
No solution since no x-values common to both inequalities.
Combining the results of all the cases, the solution is $-\frac{2}{5} \leq x \leq \frac{4}{3}$.

d) Factor using the factor theorem.
$(x-3)(x-1)(x+2)<0$
Consider all cases.
Case 1
$x-3<0 \quad x-1<0 \quad x+2<0$
$x<3 \quad x<1 \quad x<-2$
$x<-2$ is a solution.
Case 2
$x-3<0 \quad x-1>0 \quad x+2>0$
$x<3$
$x>1$ $x>-2$
$1<x<3$ is a solution.
Case 3
$x-3>0$

$$
-1<0
$$

$$
x+2>0
$$

$x>3$ $x>-2$
No solution since no x-values common to all three inequalities.
Case 4
$x-3>0 \quad x-1>0 \quad x+2<0$

$$
x>3 \quad x>1 \quad x<-2
$$

No solution since no x-values common to all three inequalities.
Combining the results of all the cases, the solution is $x<-2$ or $1<x<3$.

e) $(x-1)(x+1)(2 x+3) \geq 0$

Consider all cases.
Case 1
$x-1 \geq 0 \quad x+1 \geq 0 \quad 2 x+3 \geq 0$
$x \geq 1 \quad x \geq-1 \quad 2 x \geq-3$ $x \geq-\frac{3}{2}$
$x \geq 1$ is a solution.
Case 2
$x-1 \leq 0 \quad x+1 \leq 0 \quad 2 x+3 \geq 0$
$x \leq 1 \quad x \leq-1 \quad x \geq-\frac{3}{2}$
$-\frac{3}{2} \leq x \leq-1$ is a solution.
Case 3
$x-1 \leq 0 \quad x+1 \geq 0 \quad 2 x+3 \leq 0$

$$
x \leq 1 \quad x \geq-1 \quad x \leq-\frac{3}{2}
$$

No solution since no x-values common to all three inequalities.
Case 4
$x-1 \geq 0 \quad x+1 \leq 0 \quad 2 x+3 \leq 0$
$x \geq 1 \quad x \leq-1 \quad x \leq-\frac{3}{2}$
No solution since no x-values common to all three inequalities.
Combining the results of all the cases, the solution is $-\frac{3}{2} \leq x \leq-1$ or $x \geq 1$.

Chapter 2 Section 6

a) $(x+5.09)\left(x^{2}+0.91 x+2.36\right) \geq 0$

Use the root -5.09 to break the number line into two intervals.

Test arbitrary values of x for each interval.
For $x<-5.09$, test $x=-6$.
$(-6)^{3}+6(-6)^{3}+6(-6)^{2}+7(-6)+12=-30$
Since $-30<0, x<-5.09$ is not a solution.
For $x>-5.09$, test $x=0$.
$(0)^{3}+6(0)^{2}+7(0)+12=12$
Since $12>0, x>-5.09$ is a solution.
The solution is approximately $x \geq-5.09$.
b) $(x+2)(x+3)(x+4)<0$

Use the roots $-2,-3$, and -4 to break the number line into four intervals.

For $x<-4$, test $x=-5$.
$(-5+2)(-5+3)(-5+4)=-6$
$-6<0, x<-4$ is a solution.

For $-4<x<-3$, test $x=-3.5$.
$(-3.5+2)(-3.5+3)(-3.5+4)=0.375$
$0.375>0,-4<x<-3$ is not a solution.

For $-3<x<-2$, test $x=-2.5$.
$(-2.5+2)(-2.5+3)(-2.5+4)=-0.375$
$-0.375<0,-3<x<-2$ is a solution.
For $x>-2$, test $x=0$.
$(0+2)(0+3)(0+4)=24$
$24>0, x>-2$ is not a solution.

The solution is $x<-4$ or $-3 \leq x \leq-2$.
c) $(x-3)(x+1)(5 x-2) \leq 0$

Use the roots $3,-1$, and $\frac{2}{5}$ to break the number line into four intervals.

For $x<-1$, test $x=-2$.
$(-2-3)(-2+1)[5(-2)-2]=-60$
$-60<0, x<-1$ is a solution.

For $-1<x<\frac{2}{5}$, test $x=0$.
$(0-3)(0+1)[5(0)-2]=6$
$6>0,-1<x<\frac{2}{5}$ is not a solution.

For $\frac{2}{5}<x<3$, test $x=1$.
$(1-3)(1+1)[5(1)-2]=-12$
$-12<0, \frac{2}{5}<x<3$ is a solution.

For $x>3$, test $x=4$.
$(4-3)(4+1)[5(4)-2]=90$
$90>0, x>3$ is not a solution.

The solution is $x \leq-1$ or $\frac{2}{5} \leq x \leq 3$.
d) Using CAS to factor.
$6\left(x^{2}-2.64 x+2.40\right)\left(x^{2}+1.48 x+0.83\right)>0$
$x^{2}-2.64 x+2.40=0$
$x=\frac{2.64 \pm \sqrt{(-2.64)^{2}-4(1)(2.40)}}{2(1)}$
$x=\frac{2.64 \pm \sqrt{-2.63}}{2}$
There are no real roots.
The function is above the x-axis so it is positive for all values of x. $x^{2}+1.48 x+0.83>0$ is true for all values of x.

Chapter 2 Section 6

Question 7 Page 139
a) $(x+5)(x-1) \leq 0$

The roots are $x=-5$ and $x=1$.
Consider all cases.
Case 1
$x<-5 \quad x>1$
No solution since no x-values common to both inequalities.
Case 2
$x>-5 \quad x<1$
Solution is $-5<x<1$.
Combining the results of all the cases, the solution is $-5 \leq x \leq 1$.
b) $(3-x)(x+2)(2 x+1)<0$

The roots are $x=3, x=-2$, and $x=-\frac{1}{2}$.
Consider all cases.
Case 1

$$
\begin{aligned}
& 3-x<0 \quad x+2<0 \quad 2 x+1<0 \\
& 3<x \quad x<-2 \quad 2 x<-1 \\
& x>3 \quad x<-\frac{1}{2}
\end{aligned}
$$

No solution since no x-values common to all three inequalities.
Case 2
$3-x<0 \quad x+2>0 \quad 2 x+1>0$
$x>3 \quad x>-2 \quad x>-\frac{1}{2}$
The solution is $x>3$.
Case 3
$3-x>0 \quad x+2<0 \quad 2 x+1>0$
$x<3 \quad x<-2 \quad x>-\frac{1}{2}$
No solution since no x-values common to all three inequalities.
Case 4
$3-x>0 \quad x+2>0 \quad 2 x+1<0$
$x<3 \quad x>-2 \quad x<-\frac{1}{2}$
The solution is $-2<x<-\frac{1}{2}$.
Combining the results of all the cases, the solution is $-2<x<-\frac{1}{2}$ or $x>3$.
c) $(x-1)(x+1)(2 x+1)>0$

Consider all cases.
Case 1
$x-1>0 \quad x+1>0 \quad 2 x+1>0$
$x>1 \quad x>-1 \quad 2 x>-1$

$$
x>-\frac{1}{2}
$$

$x>1$ is a solution.

Case 2
$x-1<0 \quad x+1<0 \quad 2 x+1>0$

$$
x<1 \quad x<-1 \quad x>-\frac{1}{2}
$$

No solution since no x-values common to all three inequalities.
Case 3
$x-1>0 \quad x+1<0 \quad 2 x+1<0$

$$
x>1 \quad x<-1 \quad x<-\frac{1}{2}
$$

No solution since no x-values common to all three inequalities.
Case 4
$x-1<0 \quad x+1>0 \quad 2 x+1<0$
$x<1 \quad x>1 \quad x<-\frac{1}{2}$
$-1<x<-\frac{1}{2}$ is a solution.

Combining the results of all the cases, the solution is $-1<x<-\frac{1}{2}$ or $x>1$.
d) Factor first.
$(x-1)\left(x^{2}+x-4\right)=0$
$x=1$
or
$x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-4)}}{2(1)}$
$x=\frac{-1+\sqrt{17}}{2}$ or $x=\frac{-1-\sqrt{17}}{2}$
Use the roots to break the number line into intervals.

For $x<\frac{-1-\sqrt{17}}{2}$, test $x=-3$.
$(-3)^{3}-5(-3)+4=-8$
$-8<0, x<\frac{-1-\sqrt{17}}{2}$ is not a solution.
For $\frac{-1-\sqrt{17}}{2}<x<1$, test $x=0$.
$(0)^{3}-5(0)+4=4$
$4>0, \frac{-1-\sqrt{17}}{2}<x<1$ is a solution.
For $1<x<\frac{-1+\sqrt{17}}{2}$, test $x=1.5$.
$(1.5)^{3}-5(1.5)+4=-0.125$
$-0.125<0,1<x<\frac{-1+\sqrt{17}}{2}$ is not a solution.

For $x>\frac{-1+\sqrt{17}}{2}$, test $x=3$.
$(3)^{3}-5(3)+4=16$
$16>0, x>\frac{-1+\sqrt{17}}{2}$ is a solution.
The solution is $\frac{-1-\sqrt{17}}{2} \leq x \leq 1$ or $x \geq \frac{-1+\sqrt{17}}{2}$.

Chapter 2 Section 6

Question 8 Page 139

$$
\begin{aligned}
(6+x)(18+x)(20+x) & \geq 5280 \\
\left(x^{2}+24 x+108\right)(20+x)-5280 & \geq 0 \\
x^{3}+44 x^{2}+588 x+2160-5280 & \geq 0 \\
x^{3}+44 x^{2}+588 x-3120 & \geq 0 \\
(x-4)\left(x^{2}+48 x+780\right) & \geq 0
\end{aligned}
$$

The root is $x=4, x^{2}+48 x+780$ is positive for all values of x.
$x>4$, test $x=5$.
$(5-4)\left(5^{2}+48(5)+780\right)=1045$
$1045>0, x>4$
$x \geq 4$ is the solution.
$6+4=10$
$18+4=22$
$20+4=24$
22 cm by 24 cm by 10 cm are the minimum dimensions

Chapter 2 Section 6

Question 9 Page 139

$$
\begin{aligned}
0.5 t^{3}-5.5 t^{2}+14 t & >90 \\
0.5 t^{3}-5.5 t^{2}+14 t-90 & >0 \\
0.5\left(t^{3}-11 t^{2}+28 t-180\right) & >0 \\
0.5(x-10)\left(x^{2}-x+18\right) & >0 \\
x & >10
\end{aligned}
$$

The price of stock will be above $\$ 90$ after 10 years (in 2009).

Chapter 2 Section 6

Question 10 Page 139
Solutions to Achievement Check questions are provided in the Teacher's Resource.

Chapter 2 Section 6

Question 11 Page 139
a) 8 cases
$x+4$ negative, the rest positive
$x-2$ negative, the rest positive
$x+1$ negative, the rest positive
$x-1$ negative, the rest positive
$x+4$ positive, the rest negative
$x-2$ positive, the rest negative
$x+1$ positive, the rest negative
$x-1$ positive, the rest negative
b) Answers may vary. A sample solution is shown.

Probably, because there are fewer intervals to look at than cases above:
$x<-4,-4<x<-1,-1<x 1,1<x<2, x>2$

Chapter 2 Section 6

Question 12 Page 139

$$
\begin{aligned}
& x^{5}-5 x^{4}+7 x^{3}-7 x^{2}+6 x-2=0 \\
& \quad(x-1)\left(x^{2}+1\right)\left(x^{2}-4 x+2\right)=0 \\
& x=1
\end{aligned}
$$

or
$x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)}$
$x=\frac{4 \pm \sqrt{8}}{2}=\frac{4 \pm 2 \sqrt{2}}{2}$
$x=2+\sqrt{2}, x \doteq 3.41$
or $x=2-\sqrt{2}, x \doteq 0.59$
Use the roots to break the number line into three intervals.

For $x<0.59$, test $x=-1$.
$(-1)^{5}-5(-1)^{4}+7(-1)^{3}-7(-1)^{2}+6(-1)-2=-28$
$-28<0, x<0.59$ is a solution.
For $0.59<x<1$, test $x=0.8$.
$(0.8)^{5}-5(0.8)^{4}+7(0.8)^{3}-7(0.8)^{2}+6(0.8)-2=0.18$
$0.18>0,0.59<x<1$ is not a solution.
For $1<x<3.41$, test $x=2$.
$(2)^{5}-5(2)^{4}+7(2)^{3}-7(2)^{2}+6(2)-2=-10$ $-10<0,1<x<3.41$ is a solution.

For $x>3.41$, test $x=5$.
$(5)^{5}-5(5)^{4}+7(5)^{3}-7(5)^{2}+6(5)-2=728$
$728>0, x>3.41$ is not a solution.
The solution is approximately $x<0.59$ or $1<x<3.41$.

Chapter 2 Section 6

a) $10242<-0.15 n^{5}+3 n^{4}+5560<25325$

Graph $P(n)$ and the lines $P(n)=10242$ and $P(n)=25325$ and find the points of intersection.

The population of the town will be between 10242 and 25325 at approximately $7<n<11$ or $19<n<20$, or between 7 and 11 years from today and between 19 and 20 years from today.
b)

The population of the town is more than 30443 at approximately $12<n<18.6$, or between 12 and 19 years from today.
c)

Not valid beyond 20 years. 20 years from today the population will have fallen to 5560 , and in the next year it would fall below 0 , which is not possible.

Chapter 2 Section 6

$x^{4}-76 x^{2}+1156 \leq 0, x^{4}+76 x^{2}-1156 \geq 0$

Chapter 2 Section 6

Method 1:

Add line segments to make $\triangle \mathrm{PQA}$ and $\triangle \mathrm{PBQ}$. Both triangles share $\angle \mathrm{P}$ and because PQ is tangent to the circle, $\angle \mathrm{PQB}=\angle \mathrm{QAB}$. Therefore, $\triangle \mathrm{PQA}$ is similar to $\triangle \mathrm{PBQ}$.
So, write a ratio that can be used to determine the length of PQ :
$\frac{\mathrm{PQ}}{\mathrm{AP}}=\frac{\mathrm{BP}}{\mathrm{PQ}}$
$P Q Q^{2}=A P \times B P$
$\mathrm{PQ}^{2}=22 \times 13$
$\mathrm{PQ}=\sqrt{286}$
Method 2:
From the tangent-secant theorem that states that if a tangent from an external point P meets the circle at Q and a secant from the same point P meets the circle at B and A , then
$\mathrm{PQ}^{2}=\mathrm{PA} \times \mathrm{PB}$
$\mathrm{PQ}^{2}=22 \times 13$
$\mathrm{PQ}=\sqrt{286}$

Chapter 2 Section 6

Question 16 Page 139

Instantaneous rate of change (slope) at the point $(4,-3)$ on the circle is $\frac{4}{3}$.
Substitute $x=4$ and $y=-3$ into $y=\frac{4}{3} x+b$.

$$
\begin{aligned}
&-3=\frac{4}{3}(4)+b \\
&-3=\frac{16}{3}+b \\
&-\frac{9}{3}-\frac{16}{3}=b \\
&-\frac{25}{3}=b \\
& y=\frac{4}{3} x-\frac{25}{3}
\end{aligned}
$$

Chapter 2 Review

Chapter 2 Review

Question 1 Page 140

a) i) $P(2)=(2)^{3}+9(2)^{2}-5(2)+3=37$
ii)

-2	1	9	-5	3
-		-2	-22	-34
\times	1	11	17	37

$$
\frac{x^{3}+9 x^{2}-5 x+3}{x-2}=x^{2}+11 x+17+\frac{37}{x-2}, x \neq 2
$$

b) i) $P\left(-\frac{1}{3}\right)=12\left(-\frac{1}{3}\right)^{3}-2\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)-11=-12$
ii)

$$
\begin{aligned}
& 3 x + 1 \longdiv { 1 2 x ^ { 2 } - 2 x + 1 } \\
& \frac{12 x^{3}-2 x^{2}+x x^{2}}{-6 x^{2}+x} \\
& \frac{-6 x^{2}-2 x}{3 x-11} \\
& \frac{3 x+1}{-12}
\end{aligned}
$$

$$
\frac{12 x^{3}-2 x^{2}+x-11}{3 x+1}=4 x^{2}-2 x+1-\frac{12}{3 x+1}, x \neq-\frac{1}{3}
$$

c) i) $P\left(\frac{1}{2}\right)=-8\left(\frac{1}{2}\right)^{4}-4\left(\frac{1}{2}\right)+10\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+15=\frac{27}{2}$
ii)

$$
\begin{aligned}
& 2 x-1 x^{3}+3 x^{2}+x-\frac{3}{2} \\
& \frac{-8 x^{4}+4 x^{3}}{6 x^{3}-x^{2}} \\
& \frac{6 x^{3}-3 x^{2}}{2 x^{2}-4 x} \\
& \frac{2 x^{2}-x}{-3 x+15} \\
& \frac{-3 x+\frac{3}{2}}{\frac{27}{2}} \\
& \frac{-8 x^{4}-4 x+10 x^{3}-x^{2}+15}{2 x-1}=-4 x^{3}+3 x^{2}+x-\frac{3}{2}+\frac{27}{2(2 x-1)}, x \neq \frac{1}{2}
\end{aligned}
$$

Chapter 2 Review

Question 2 Page 140

a) $f(3)=3^{4}+k(3)^{3}-3(3)-5=-10$

$$
\begin{aligned}
81+27 k-9-5 & =-10 \\
27 k & =-10-67 \\
27 k & =-77 \\
k & =-\frac{77}{27}
\end{aligned}
$$

b) $f(-3)=(-3)^{4}-\frac{77}{27}(-3)^{3}-3(-3)-5$

$$
=162
$$

c)

Chapter 2 Review

$$
\begin{aligned}
P(1) & =4-3+b+6 \\
& =7+b \\
P(-3) & =4(-3)^{3}-3(-3)^{2}-3 b+6 \\
& =-108-27-3 b+6 \\
& =-129-3 b \\
7+b & =-129-3 b \\
b+3 b & =-129-7 \\
4 b & =-136 \\
b & =-34
\end{aligned}
$$

Chapter 2 Review

Question 4 Page 140

a) $\begin{aligned} P(-1) & =-1-4-1+6 \\ & =0\end{aligned}$
$(x+1)$ is a factor.
Divide to determine the other factors.

$$
\begin{aligned}
& \begin{array}{r|rrrr}
1 & 1 & -4 & 1 & 6 \\
- & 1 & -5 & 6 \\
\hline \times & 1 & -5 & 6 & 0
\end{array} \\
& x^{3}-4 x^{2}+x+6=(x+1)\left(x^{2}-5 x+6\right) \\
& =(x+1)(x-3)(x-2)
\end{aligned}
$$

b) $P(-2)=3(-2)^{3}-5(-2)^{2}-26(-2)-8$

$$
=0
$$

$(x+2)$ is a factor.

2	3	-5	-26	-8
-		6	-22	-8
\times	3	-11	-4	0

$$
\begin{aligned}
3 x^{3}-5 x^{2}-26 x-8 & =(x+2)\left(3 x^{2}-11 x-4\right) \\
& =(x+2)(3 x+1)(x-4)
\end{aligned}
$$

c) $P(1)=5+12-101+48+36$

$$
=0
$$

$(x-1)$ is a factor.

$$
\begin{array}{c|rrrrr}
-1 & 5 & 12 & -101 & 48 & 36 \\
- & & -5 & -17 & 84 & 36 \\
\hline \times & 5 & 17 & -84 & -36 & 0
\end{array}
$$

$$
5 x^{4}+12 x^{3}-101 x^{2}+48 x+36=(x-1)\left(5 x^{3}+17 x^{2}-84 x-36\right)
$$

$$
P(3)=5(3)^{3}+17(3)^{2}-84(3)-36
$$

$$
=0
$$

$(x-3)$ is a factor.

$$
\begin{array}{rlrrr}
\begin{array}{r|rrr}
-3 & 5 & 17 & -84 \\
-36 \\
- & -15 & -96 & -36
\end{array} \\
\hline \times & 5 & 32 & 12 & 0
\end{array} \quad \begin{aligned}
5 x^{4}+12 x^{3}-101 x^{2}+48 x+36 & =(x-1)(x-3)\left(5 x^{2}+32 x+12\right) \\
& =(x-1)(x-3)(x+6)(5 x+2)
\end{aligned}
$$

Chapter 2 Review

Question 5 Page 140

a) $-4 x^{3}-4 x^{2}+16 x+16=-4\left(x^{3}+x^{2}-4 x-4\right)$

$$
\begin{aligned}
& =-4\left[x^{2}(x+1)-4(x+1)\right] \\
& =-4(x+1)\left(x^{2}-4\right) \\
& =-4(x+1)(x+2)(x-2)
\end{aligned}
$$

b) $25 x^{3}-50 x^{2}-9 x+18=25 x^{2}(x-2)-9(x-2)$

$$
\begin{aligned}
& =(x-2)\left(25 x^{2}-9\right) \\
& =(x-2)(5 x-3)(5 x+3)
\end{aligned}
$$

c) $2 x^{4}+5 x^{3}-8 x^{2}-20 x=x\left(2 x^{3}+5 x^{2}-8 x-20\right)$

$$
\begin{aligned}
& =x\left[2 x\left(x^{2}-4\right)+5\left(x^{2}-4\right)\right] \\
& =x(2 x+5)\left(x^{2}-4\right) \\
& =x(2 x+5)(x+2)(x-2)
\end{aligned}
$$

a) $V(-1)=-2+7-2-3$

$$
=0
$$

(x	is a factor
1	$27 \quad 2$-3
-	$2 \begin{array}{llll}2 & 5 & -3\end{array}$
	2 5-3 0

$$
\begin{aligned}
V(x) & =(x+1)\left(2 x^{2}+5 x-3\right) \\
& =(x+1)(x+3)(2 x-1)
\end{aligned}
$$

The dimensions are $(x+1) \mathrm{m}$ by $(x+3) \mathrm{m}$ by $(2 x-1) \mathrm{m}$.
b) $(1+1) \mathrm{m}$ by $(1+3) \mathrm{m}$ by $(2-1) \mathrm{m}$, or 4 m by 2 m by 1 m

Chapter 2 Review

Question 7 Page 140

$$
\begin{aligned}
P(-3) & =(-3)^{3}+4(-3)^{2}-2(-3) k+3 \\
0 & =-27+36+6 k+3 \\
6 k & =-12 \\
k & =-2
\end{aligned}
$$

Chapter 2 Review

Question 8 Page 140

$x=-4$ or $x=-2$ or $x=3$

Chapter 2 Review

Question 9 Page 140
a) $\quad 5\left(x^{2}+4\right) 3\left(x^{2}-16\right)=0$

$$
15\left(x^{2}+4\right)(x+4)(x-4)=0
$$

$$
x=-4 \text { or } x=4
$$

b) $x=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(-13)}}{2(2)}$

$$
x=\frac{1-\sqrt{105}}{4} \text { or } x=\frac{1+\sqrt{105}}{4}
$$

Chapter 2 Review

a) $P(-1)=-7+5+5-3$

$$
=0
$$

$$
(x+1) \text { is a factor. }
$$

$$
\begin{array}{l|rrrr}
1 & 7 & 5 & -5 & -3 \\
- & 7 & -2 & -3 \\
\hline & 7 & -2 & -3 & 0
\end{array}
$$

$$
7 x^{3}+5 x^{2}-5 x-3=(x+1)\left(7 x^{2}-2 x-3\right)
$$

$$
x=-1
$$

or

$$
\begin{aligned}
& x=\frac{2 \pm \sqrt{(-2)^{2}-4(7)(-3)}}{2(7)} \\
& x=\frac{2 \pm \sqrt{88}}{14} \\
& x \doteq-0.5 \text { or } x \doteq 0.8
\end{aligned}
$$

b) $-x^{3}+9 x^{2}-x-6=0$

$x \doteq-0.7$ or $x \doteq 0.9$ or $x \doteq 8.8$

Chapter 2 Review

Question 11 Page 140

$$
\begin{aligned}
V(x) & =l(l-5)(2 l+1) \\
550 & =l\left(2 l^{2}-9 l-5\right) \\
0 & =2 l^{3}-9 l^{2}-5 l-550
\end{aligned}
$$

$$
\begin{aligned}
l & \doteq 8.55 \\
w & \doteq 8.55-5 \\
& \doteq 3.55 \\
h & \doteq 2(8.55)+1 \\
& \doteq 18.1
\end{aligned}
$$

The possible dimensions of the box are approximately 8.55 cm by 3.55 cm by 18.10 cm

Chapter 2 Review

Question 12 Page 140
B since the zeros are different.

Chapter 2 Review
 Question 13 Page 140

a) $y=k x(x-2+\sqrt{5})(x-2-\sqrt{5})$
$y=k x\left(x^{2}-2 x-\sqrt{5} x-2 x+4+2 \sqrt{5}+\sqrt{5} x-2 \sqrt{5}-5\right)$
$y=k x\left(x^{2}-4 x-1\right)$
$y=k\left(x^{3}-4 x^{2}-x\right)$
b) let $x=2$ and $y=20$

$$
\begin{aligned}
& 20=k\left(2^{3}-4(2)^{2}-2\right) \\
& 20=-10 k \\
& k=-2 \\
& y=-2\left(x^{3}-4 x^{2}-x\right)
\end{aligned}
$$

Chapter 2 Review

The zeros are -2 (order 2) and 1 .
$y=k(x+2)^{2}(x-1)$
Using the point $(-1,6)$ from the graph, substitute $x=-1$ and $y=6$.
$6=k(-1+2)^{2}(-1-1)$
$6=-2 k$
$k=-3$
$y=-3(x+2)^{2}(x-1)$

Chapter 2 Review
a)

Question 15 Page 141

The values that satisfy the inequality $x^{2}+3 x-5 \geq 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs approximately when $x \leq-4.2$ or $x \geq 1.2$.
b)

The values that satisfy the inequality $2 x^{3}-13 x^{2}+17 x+12>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when
$-\frac{1}{2}<x<3$ or $x>4$.
c)

The values that satisfy the inequality $x^{3}-2 x^{2}-5 x+2<0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when approximately $x<-1.7$ or $0.4<x<3.3$.
d)

The values that satisfy the inequality $3 x^{3}+4 x^{2}-35 x-12 \leq 0$ are the values of x for which the graph is zero and negative (on or below the x-axis). From the graph, this occurs when $x \leq-4$ or $-\frac{1}{3} \leq x \leq 3$.
e)

The values that satisfy the inequality $-x^{4}-2 x^{3}+4 x^{2}+10 x+5<0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs approximately when $x<-2.2$ or $x>2.2$.

$$
\begin{aligned}
h(t)= & -0.002 t^{4}+0.104 t^{3}-1.69 t^{2}+8.5 t+9>15 \\
& -0.002 t^{4}+0.104 t^{3}-1.69 t^{2}+8.5 t-6>0
\end{aligned}
$$

The values that satisfy the inequality $-0.002 t^{4}+0.104 t^{3}-1.69 t^{2}+8.5 t-6>0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs approximately when approximately between 0.8 s and 7.6 s and between 20 s and 23.6 s .

Chapter 2 Review

Question 17 Page 141

a) Consider all cases.

Case 1

$$
\begin{array}{rlrl}
5 x+4 & <0 & x-4 & >0 \\
5 x & <-4 & x & >4 \\
x & <-\frac{4}{5} & &
\end{array}
$$

No solution since no x-values common to both inequalities.

Case 2

$5 x+4>0$
$x-4<0$
$x>-\frac{4}{5}$
$x<4$
$-\frac{4}{5}<x<4$ is a solution.

Combining the results of all the cases, the solution is $-\frac{4}{5}<x<4$.
b) $(2 x+3)(x-1)(3 x-2) \geq 0$

Consider all cases.
Case 1

$$
\begin{aligned}
& 2 x+3>0 \quad x-1>0 \quad 3 x-2>0 \\
& 2 x>-3 \quad x>1 \quad 3 x>2 \\
& x>-\frac{3}{2} \quad x>\frac{2}{3}
\end{aligned}
$$

$x>1$ is a solution.
Case 2

$$
\begin{array}{rlrr}
2 x+3 & >0 & x-1<0 & 3 x-2<0 \\
x & >-\frac{3}{2} & x<1 & x<\frac{2}{3} \\
-\frac{3}{2} & <x<\frac{2}{3} \text { is a solution. } &
\end{array}
$$

Case 3

$$
\begin{aligned}
& 2 x+3<0 \quad x-1<0 \quad 3 x-2>0 \\
& x<-\frac{3}{2} \quad x<1 \quad x>\frac{2}{3}
\end{aligned}
$$

No solution since no x-values common to all three inequalities.
Case 4
$2 x+3<0 \quad x-1>0 \quad 3 x-2<0$
$x<-\frac{3}{2} \quad x>1 \quad x<\frac{2}{3}$
No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $-\frac{3}{2} \leq x \leq \frac{2}{3}$ or $x \geq 1$.

c) $\left(x^{2}+4 x+4\right)(x+5)(x-5)>0$

Consider all cases.
Case 1

$$
\begin{aligned}
& x+5>0 \quad x-5>0 \\
& x>-5 \quad x>5 \\
& x>5 \text { is a solution. }
\end{aligned}
$$

Case 2
$x+5<0 \quad x-5<0$

$$
x<-5 \quad x<5
$$

$x<-5$ is a solution.
Combining the results of all the cases, the solution is $x<-5$ or $x>5$.

Chapter 2 Review

Question 18 Page 141

a) $12 x^{2}+25 x-7=(3 x+7)(4 x-1)$
$(3 x+7)(4 x-1) \geq 0$
Consider all cases.

Case 1

$$
\begin{array}{rlrl}
3 x+7 & >0 & 4 x-1 & >0 \\
3 x & >-7 & 4 x & >1 \\
x & >-\frac{7}{3} & x & >\frac{1}{4} \\
x>\frac{1}{4} & \text { is a solution. }
\end{array}
$$

Case 2
$\begin{array}{rlrl}3 x+7 & <0 & 4 x-1 & <0 \\ x & <-\frac{7}{3} & x & <\frac{1}{4}\end{array}$
$x<-\frac{7}{3}$ is a solution.
Combining the results of all the cases, the solution is $x \leq-\frac{7}{3}$ or $x \geq \frac{1}{4}$.
b) $(x+4)(2 x-3)(3 x-1) \leq 0$

Consider all cases.
Case 1

$$
\begin{array}{rlrl}
x+4 & <0 & 2 x-3 & <0 \\
x & <-4 & 2 x & <3 \\
x & <\frac{3}{2} & 3 x & <0 \\
& x & <\frac{1}{3}
\end{array}
$$

$x<-4$ is a solution.
Case 2

$$
\begin{array}{rrrr}
x+4<0 & 2 x-3>0 & 3 x-1>0 \\
x<-4 & x>\frac{3}{2} & x>\frac{1}{3}
\end{array}
$$

No solution since no x-values common to all three inequalities.
Case 3

$$
\begin{aligned}
& x+4>0 \\
& 2 x-3<0 \\
& 3 x-1>0 \\
& x>-4 \quad x<\frac{3}{2} \\
& x>\frac{1}{3} \\
& \frac{1}{3}<x<\frac{3}{2} \text { is a solution. }
\end{aligned}
$$

Case 4

$$
\begin{array}{rlrr}
x+4 & >0 & 2 x-3 & >0 \\
x & >-4 & x & >\frac{3}{2}
\end{array}
$$

No solution since no x-values common to all three inequalities.
Combining the results of all the cases, the solution is $x \leq-4$ or $\frac{1}{3} \leq x \leq \frac{3}{2}$.
c)

$-3(x-4.3)(x+2.4)\left(x^{2}-1.5 x+1.0\right)<0$
Consider all cases.
Case 1
$x-4.3>0 \quad x+2.4>0$
$x>4.3 \quad x>-2.4$
$x>4.3$ is a solution.
Case 2
$x-4.3<0 \quad x+2.4<0$
$x<4.3 \quad x<-2.4$
$x<-2.4$ is a solution.
The solution is approximately $x<-2.4$ or $x>4.3$.

Chapter Problem

Solutions for the Chapter Problem Wrap up are provided in the Teacher's Resource.

Chapter 2 Practice Test

Chapter 2 Practice Test

Question 1 Page 142

The correct solution is \mathbf{C}.

$$
\begin{aligned}
P(-2) & =5(-2)^{3}+4(-2)^{2}-3(-2)+2 \\
& =-16
\end{aligned}
$$

Chapter 2 Practice Test

Question 2 Page 142
The correct solution is \mathbf{C}.
$P(2)=2(2)^{3}-5(2)^{2}-9(2)+18 \neq 0$

Chapter 2 Practice Test

Question 3 Page 142

The correct solution is \mathbf{D}.

The only set to include ± 1 and $\pm \frac{1}{4}$

Chapter 2 Practice Test

Question 4 Page 142
a)

$$
\begin{aligned}
& \begin{array}{r|rrr}
3 & 1 & -4 & 3 \\
-7 & -7 \\
- & 3 & -21 & 72 \\
\hline \times & 1 & -7 & 24
\end{array}-79 \\
& \frac{x^{3}-4 x^{2}+3 x-7}{x+3}=x^{2}-7 x+24-\frac{79}{x+3}
\end{aligned}
$$

b) $x \neq-3$
c) $(x+3)\left(x^{2}-7 x+24\right)-79$
d) $(x+3)\left(x^{2}-7 x+24\right)-79=x^{3}-7 x^{2}+24 x+3 x^{2}-21 x+72-79$

$$
=x^{3}-4 x^{2}+3 x-7
$$

Chapter 2 Practice Test

Question 5 Page 142
a) $f(-2)=(-2)^{4}+(-2)^{3} k-2(-2)^{2}+1$ $5=16-8 k-8+1$
$8 k=9-5$
$8 k=4$

$$
k=\frac{1}{2}
$$

b) $f(-4)=(-4)^{4}+(-4)^{3}\left(\frac{1}{2}\right)-2(-4)^{2}+1$

$$
=256-32-32+1
$$

$$
=193
$$

c)

$$
\begin{array}{r}
x^{3}-\frac{7}{2} x^{2}+12 x-48 \\
x + 4 \longdiv { x ^ { 4 } + \frac { 1 } { 2 } x ^ { 3 } - 2 x ^ { 2 } + 0 x + 1 } \\
\frac{x^{4}+4 x^{3}}{-\frac{7}{2} x^{3}-2 x^{2}} \\
\frac{-\frac{7}{2} x^{3}-14 x^{2}}{12 x^{2}}+0 x \\
\frac{12 x^{2}+48 x}{-48 x+1} \\
\frac{-48 x-192}{193}
\end{array}
$$

Chapter 2 Practice Test

a) $P(-1)=-1-5-2+8$
$=0$
$(x+1)$ is a factor.

1	1	-5	2	8
-	1	-6	8	
\times	1	-6	8	0

$$
\begin{aligned}
x^{3}-5 x^{2}+2 x+8 & =(x+1)\left(x^{2}-6 x+8\right) \\
& =(x+1)(x-4)(x-2)
\end{aligned}
$$

b) $P(-2)=(-2)^{3}+2(-2)^{2}-9(-2)-18$

$$
=0
$$

$(x+2)$ is a factor.

$$
\begin{aligned}
x^{3}+2 x^{2}-9 x-18 & =(x+2)\left(x^{2}-9\right) \\
& =(x+2)(x+3)(x-3)
\end{aligned}
$$

Question 6 Page 142

c)

$\begin{aligned} & \text { - NewProb Dor } \\ & -x^{3}+5 \cdot x^{2}-2 \cdot x-24 \mid \times=2 \end{aligned}$	

$(x-2)$ is a factor.

$(x+3)$ is a factor.

$(x+4)$ is a factor.
$x^{3}+5 x^{2}-2 x-24=(x-2)(x+3)(x+4)$
d)

$(x-1)$ is a factor.

$$
\begin{aligned}
& x - 1 \longdiv { 5 x ^ { 2 } + 1 2 x + 4 } \\
& \frac{5 x^{3}-5 x^{2}}{12 x^{2}-8 x} \\
& \frac{12 x^{2}-12 x}{4 x}-4 \\
& \frac{4 x-4}{0} \\
& \begin{aligned}
5 x^{3}+7 x^{2}-8 x-4 & =(x-1)\left(5 x^{2}+12 x+4\right) \\
& =(x-1)(x+2)(5 x+2)
\end{aligned}
\end{aligned}
$$

e) $P(-2)=(-2)^{3}+9(-2)^{2}+26(-2)+24$

$$
=0
$$

$(x+2)$ is a factor.

$$
\begin{array}{c|cccc}
2 & 1 & 9 & 26 & 24 \\
- & 2 & 14 & 24 \\
\hline \times & 1 & 7 & 12 & 0
\end{array}
$$

$$
x^{3}+9 x^{2}+26 x+24=(x+2)\left(x^{2}+7 x+12\right)
$$

$$
=(x+2)(x+3)(x+4)
$$

f)

$(x+1)$ is a factor.

$(x+2)$ is a factor.

$(x+3)$ is a factor.

$(2 x+1)$ is a factor.
$2 x^{4}+13 x^{3}+28 x^{2}+23 x+6=(x+1)(x+2)(x+3)(2 x+1)$

Chapter 2 Practice Test

Question 7 Page 142
$x=-5$ or $x=3$ or $x=-2$

Chapter 2 Practice Test

Question 8 Page 142

a) $x=2$
b) $(x+11)(x-11)\left(x^{2}+16\right)=0$
$x=-11$ or $x=11$
c) $2\left(x^{2}-2 x+3\right)\left(x^{2}-25\right)=0$
$2\left(x^{2}-2 x+3\right)(x-5)(x+5)=0$
$x=5$ or $x=-5$
d) $3\left(x^{2}-9\right)(x-5)(x+2)=0$
$3(x-3)(x+3)(x-5)(x+2)=0$
$x=3$ or $x=-3$ or $x=5$ or $x=-2$

Chapter 2 Practice Test

Question 9 Page 142

a) $(x+1)^{2}(x+2)=0$
$x=-1$ or $x=-2$
b) $(x-3)(x-1)(x+4)=0$
$x=3$ or $x=1$ or $x=-4$
c) $(2 x-3)(4 x-7)(4 x+7)=0$
$x=\frac{3}{2}$ or $x=\frac{7}{4}$ or $x=-\frac{7}{4}$
$x=1.5$ or $x=1.75$ or $x=-1.75$
d) $x(3 x-2)(3 x+2)(5 x-3)=0$
$x=0$ or $x=\frac{2}{3}$ or $x=-\frac{2}{3}$ or $x=\frac{3}{5}$

Chapter 2 Practice Test

Question 10 Page 142

Answers may vary. A sample solution is shown.
a) All involve polynomials; the equation is a statement about two equivalent expressions (e.g., $x^{2}-x=x^{7}+8$), the inequality is a statement about two unequivalent expressions (e.g., $x^{2}-x<x^{7}+8$), and the function is a relationship giving each element in the domain one corresponding value in the range (e.g., $y=x^{7}+8$).
b) When an polynomial equation such as $x^{2}-x$ is equal to zero, the roots of the equation are the same as the zeros of the function $y=x^{2}-x$ and the x-intercepts of the graph of $x^{2}-x$.

Chapter 2 Practice Test

Question 11 Page 143

a) $y=k x(x+3)(2 x+3)(x-2)$

Using the point $(-2,4)$, substitute $x=-2$ and $y=4$ and solve for k.
$4=k(-2)(-2+3)(2(-2)+3)(-2-2)$
$4=-8 k$
$k=-\frac{1}{2}$
$y=-\frac{1}{2} x(x+3)(2 x+3)(x-2)$
b) $x<-3,-\frac{3}{2}<x<0, x>2$

Chapter 2 Practice Test

Question 12 Page 143

a) $y=k(x-5)^{2}(x+2+\sqrt{6})(x+2-\sqrt{6})$

$$
\begin{aligned}
& y=k\left(x^{2}-10 x+25\right)\left(x^{2}+2 x-\sqrt{6} x+2 x+4-2 \sqrt{6}+\sqrt{6} x+2 \sqrt{6}-6\right) \\
& y=k\left(x^{2}-10 x+25\right)\left(x^{2}+4 x-2\right) \\
& y=k\left(x^{4}+4 x^{3}-2 x^{2}-10 x^{3}-40 x^{2}+20 x+25 x^{2}+100 x-50\right) \\
& y=k\left(x^{4}-6 x^{3}-17 x^{2}+120 x-50\right)
\end{aligned}
$$

b) Substitute $x=0$ and $y=20$ and solve for k.

$$
\begin{aligned}
20 & =k\left(0^{4}-6(0)^{3}-17(0)^{2}+120(0)-50\right) \\
20 & =-50 k \\
k & =-\frac{2}{5} \\
y & =-\frac{2}{5}\left(x^{4}-6 x^{3}-17 x^{2}+120 x-50\right)
\end{aligned}
$$

Chapter 2 Practice Test

a) height $=x$
width $=(20-2 x)$
length $=18-x$
$V(x)=x(20-2 x)(18-x)$
b) $V(x)=x(20-2 x)(18-x)$

$$
\begin{aligned}
450 & =x\left(360-56 x+2 x^{2}\right) \\
0 & =x\left(360-56 x+2 x^{2}\right)-450 \\
0 & =2 x^{3}-56 x^{2}+360 x-450
\end{aligned}
$$

$$
\begin{array}{lll}
\text { height } \doteq 1.6 & \text { height } \doteq 7.1 & \text { height } \doteq 19.3 \\
\text { width } \doteq 16.7 & \text { width } \doteq 5.8 & \text { width } \doteq-18.5 \\
\text { length } \doteq 16.4 & \text { length } \doteq 10.9 & \text { length } \doteq-1.3
\end{array}
$$

Disregard negative dimensions.

The possible dimensions of the box are approximately 16.7 cm by 16.4 cm by 1.6 cm or 5.8 cm by 10.9 cm by 7.1 cm
c) $V(x)=k x(20-2 x)(18-x)$
d) Answers may vary. A sample solution is shown.

Chapter 2 Practice Test

Question 14 Page 143
a) $x^{3}-8 x^{2}+3 x+9 \leq 0$

Approximately $x \leq-0.9$ or $1.4 \leq x \leq 7.4$.
b) $-x^{4}+3 x^{3}+9 x^{2}-5 x-5>0$

Approximately $-2.0<x<-0.6$ or $0.9<x<4.7$.

Chapter 2 Practice Test
a)

Question 15 Page 143

Approximately $x<-3.6$ or $-1.1<x<1.7$.
b)

$-1.5 \leq x \leq-1$ or approximately $x \leq-1.7$ or $x \geq 1.7$.

Chapter 2 Practice Test

Question 16 Page 143

a) $(3 x-4)(3 x+4)<0$

Consider all cases.
Case 1

$$
\begin{array}{rlrl}
3 x-4 & >0 & 3 x+4 & <0 \\
3 x & >4 & 3 x & <-4 \\
x & >\frac{4}{3} & x & <-\frac{4}{3}
\end{array}
$$

No solution since no x-values common to both inequalities.
Case 2

$$
\begin{array}{rlrl}
3 x-4 & <0 & 3 x+4 & >0 \\
x & <\frac{4}{3} \quad x>-\frac{4}{3} \\
-\frac{4}{3} & <x & <\frac{4}{3} \text { is a solution. }
\end{array}
$$

Combining the results of all the cases, the solution is $-\frac{4}{3}<x<\frac{4}{3}$.
b) $-x\left(x^{2}-6 x+9\right)>0$
$-x(x-3)^{2}>0$

$$
x(x-3)^{2}<0
$$

$x<0 \quad x<3$
The solution is $x<0$.
c) $2 x\left(x^{2}-9\right)+5\left(x^{2}-9\right) \leq 0$
$(2 x+5)(x-3)(x+3) \leq 0$
Consider all cases.
Case 1
$2 x+5<0$
$x-3<0 \quad x+3<0$
$x<-\frac{5}{2}$
$x<3$
$x<-3$
$x<3$ is a solution.
Case 2
$2 x+5<0$

$$
x-3>0 \quad x+3>0
$$

$x<-\frac{5}{2}$
$x>3$
$x>-3$
No solution since no x-values common to all three inequalities.
Case 3
$2 x+5>0$

$$
x-3>0 \quad x+3<0
$$

$$
x>-\frac{5}{2} \quad x>3 \quad x<-3
$$

No solution since no x-values common to all three inequalities.
Case 4

$$
2 x+5>0 \quad x-3<0 \quad x+3>0
$$

$$
x>-\frac{5}{2} \quad x<3 \quad x>-3
$$

$-\frac{5}{2}<x<3$ is a solution.
Combining the results of all the cases, the solution is $x \leq-3$ or $-\frac{5}{2} \leq x \leq 3$.
d) $(x-2)(2 x+1)(x+1)(x+3) \geq 0$

Consider all cases.
Case 1
$x>2 \quad x>-\frac{1}{2} \quad x>-1 \quad x>-3$
$x>2$ is a solution.
Case 2
$x<2 \quad x<-\frac{1}{2} \quad x>-1 \quad x>-3$
$-1<x<-\frac{1}{2}$ is a solution.
Case 3
$x>2 \quad x>-\frac{1}{2} \quad x<-1 \quad x<-3$
No solution since no x-values common to all four inequalities.
Case 4
$x<2 \quad x>-\frac{1}{2} \quad x<-1 \quad x>-3$
No solution since no x-values common to all four inequalities.
Case 5
$x<2 \quad x>-\frac{1}{2} \quad x>-1 \quad x<-3$
No solution since no x-values common to all four inequalities.
Case 6
$x>2 \quad x<-\frac{1}{2} \quad x<-1 \quad x>-3$
No solution since no x-values common to all four inequalities.
Case 7
$x>2 \quad x<-\frac{1}{2} \quad x>-1 \quad x<-3$
No solution since no x-values common to all four inequalities.
Case 8
$x<2 \quad x<-\frac{1}{2} \quad x<-1 \quad x<-3$
$x<-3$ is a solution.

Combining the results of all the cases, the solution is $x \leq-3$ or $-1 \leq x \leq-\frac{1}{2}$ or $x \geq 2$.

Chapter 2 Practice Test

a) $V(x)=x(32-2 x)(40-2 x)$
b) i) $V(x)=2 x(32-2 x)(40-2 x)$
ii) $V(x)=\frac{1}{2} x(32-2 x)(40-2 x)$
c) family of functions
d) $V(x)=x(32-2 x)(40-2 x)$

$$
\begin{aligned}
V(x) & >2016 \\
x\left(1280-144 x+4 x^{2}\right)-2016 & >0 \\
4 x^{3}-144 x^{2}+1280 x-2016 & >0 \\
4\left(x^{3}-36 x^{2}+320 x-504\right) & >0
\end{aligned}
$$

The values of x that will result in boxes of a volume greater than 2016 are approximately $2<x<10.9$ or $x>23.1$.

