Chapter 2

Polynomial Equations and Inequalities

Chapter 2 Prerequisite Skills

Chapter 2 Prerequisite Skills			
a)	$ \begin{array}{r} 124\\28 \\ \hline 3476\\ \hline 28\\67\\ \hline 56\\116\\\underline{112}\\4 \end{array} $	124 R4	
b)	$ \begin{array}{r} 161 \\ 37)5973 \\ \underline{37} \\ 227 \\ 222 \\ 53 \\ \underline{37} \\ 16 \\ \end{array} $	161 R16	
c)	$ \begin{array}{r} 147 \\ 17)2508 \\ \underline{17} \\ 80 \\ \underline{68} \\ 128 \\ \underline{119} \\ 9 \\ 147 R9 $	147 R9	
d)	$ \begin{array}{r} 358 \\ 19)6815 \\ \underline{57} \\ 111 \\ 95 \\ 165 \\ \underline{152} \\ 13 \end{array} $	358 R13	

Question 1 Page 82

Question 2 Page 82

a)
$$P(-1) = (-1)^3 - 5(-1)^2 + 7(-1) - 9$$

 $= -1 - 5 - 7 - 9$
 $= -22$
b) $P(3) = (3)^3 - 5(3)^2 + 7(3) - 9$
 $= 27 - 45 + 21 - 9$
 $= -6$
c) $P(-2) = (-2)^3 - 5(-2)^2 + 7(-2) - 9$
 $= -8 - 20 - 14 - 9$
 $= -51$
d) $P\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3 - 5\left(-\frac{1}{2}\right)^2 + 7\left(-\frac{1}{2}\right) - 9$
 $= -\frac{1}{8} - \frac{5}{4} - \frac{7}{2} - 9$
 $= -13.875$

e)
$$P\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 - 5\left(\frac{2}{3}\right)^2 + 7\left(\frac{2}{3}\right) - 9$$

$$= \frac{8}{27} - \frac{20}{9} + \frac{14}{3} - 9$$
$$= -\frac{169}{27}$$

Chapter 2 Prerequisite Skills a) $(x^3 + 3x^2 - x + 1)(x - 2) + 5 = x^4 - 2x^3 + 3x^3 - 6x^2 - x^2 + 2x + x - 2 + 5$ $= x^4 + x^3 - 7x^2 + 3x + 3$ b) $(2x^3 - 4x^2 + x - 3)(x + 4) - 7 = 2x^4 + 8x^3 - 4x^3 - 16x^2 + x^2 + 4x - 3x - 12 - 7$ $= 2x^4 + 4x^3 - 15x^2 + x - 19$ c) $(x^3 + 4x^2 - x + 8)(3x - 1) + 6 = 3x^4 - x^3 + 12x^3 - 4x^2 - 3x^2 + x + 24x - 8 + 6$ $= 3x^4 + 11x^3 - 7x^2 + 25x - 2$ d) $(x - \sqrt{2})(x + \sqrt{2}) = x^2 + \sqrt{2}x - \sqrt{2}x - 2$ $= x^2 - 2$ e) $(x - 3\sqrt{5})(x + 3\sqrt{5}) = x^2 + 3\sqrt{5}x - 3\sqrt{5}x - 45$ $= x^2 - 45$

f)
$$(x-1+\sqrt{3})(x-1-\sqrt{3}) = x^2 - x - \sqrt{3}x - x + 1 + \sqrt{3} + \sqrt{3}x - \sqrt{3} - 3$$

= $x^2 - 2x - 2$

Chapter 2 Prerequisite Skills

Question 4 Page 82

Question 5 Page 82

d) $3(4c^2 - 9) = 3(2c - 3)(2c + 3)$

- **a)** (x-2)(x+2) **b)** (5m-7)(5m+7)
- c) (4y 3)(4y + 3)
- e) $2(x^4 16) = 2(x^2 4)(x^2 + 4)$ = $2(x - 2)(x + 2)(x^2 + 4)$
- **f)** $3(n^4 4) = 3(n^2 2)(n^2 + 2)$

Chapter 2 Prerequisite Skills

a) (x+3)(x+2)b) (x-4)(x-5)c) (b+7)(b-2)d) (2x+3)(x-5)e) $(2x-3)^2$ f) (2a-1)(3a-2)g) $(3m-4)^2$ h) (m-3)(3m-1)

Question 6 Page 82

a)
$$(x-5)(x+3) = 0$$

 $x = -3 \text{ or } x = 5$
b) $(x+1)(4x-3) = 0$
 $x = -1 \text{ or } x = \frac{3}{4}$
c) $4(4x^2-9) = 0$
 $4(2x+3)(2x-3) = 0$
 $x = -\frac{3}{2} \text{ or } x = \frac{3}{2}$
d) $9x^2 - 48x + 15 = 0$
 $3(3x^2 - 16x + 5) = 0$
 $3(3x - 1)(x - 5) = 0$
 $x = \frac{1}{3} \text{ or } x = 5$
e) $8x^2 + 12x - 20 = 0$
 $4(2x^2 + 3x - 5) = 0$
 $4(2x + 5)(x - 1) = 0$
 $x = -\frac{5}{2} \text{ or } x = 1$

f)
$$21x^2 - 10x + 1 = 0$$

 $(7x - 1)(3x - 1) = 0$
 $x = \frac{1}{7}$ or $x = \frac{1}{3}$

Question 7 Page 82

a)
$$x = \frac{-6 \pm \sqrt{6^2 - 4(5)(-1)}}{2(5)}$$

 $= \frac{-6 \pm \sqrt{36 + 20}}{10}$
 $= \frac{-6 \pm \sqrt{56}}{10}$
 $= \frac{-3 \pm \sqrt{14}}{5}$
 $x = -1.3 \text{ or } x = 0.1$
b) $x = \frac{7 \pm \sqrt{(-7)^2 - 4(2)(4)}}{2(2)}$
 $= \frac{7 \pm \sqrt{49 - 32}}{4}$
 $= \frac{7 \pm \sqrt{17}}{4}$
 $x = 0.7 \text{ or } x = 2.8$
c) $x = \frac{-2 \pm \sqrt{2^2 - 4(4)(-3)}}{2(4)}$
 $= \frac{-2 \pm \sqrt{44 + 48}}{8}$
 $= \frac{-2 \pm \sqrt{52}}{8}$
 $= \frac{-1 \pm \sqrt{13}}{4}$
 $x = -1.2 \text{ or } x = 0.7$
d) $x = \frac{7 \pm \sqrt{(-7)^2 - 4(6)(-20)}}{2(6)}$
 $= \frac{7 \pm \sqrt{49 + 480}}{12}$
 $= \frac{7 \pm \sqrt{529}}{12}$
 $= \frac{7 \pm 23}{12}$
 $x = -1.3 \text{ or } x = 2.5$

Question 8 Page 82

a)
$$y = a(x + 4)(x - 1)$$

 $2 = a[(-1) + 4][(-1) - 1]$
 $2 = -6a$
 $a = -\frac{1}{3}$
 $y = -\frac{1}{3}(x + 4)(x - 1)$
b) $y = ax(x - 3)$
 $6 = a(2)(2 - 3)$
 $6 = a(2)(2 - 3)$
 $6 = a(2)(2 - 3)$
 $6 = -2a$
 $a = -3$
 $y = -3x(x - 3)$
c) $y = a(x + 3)(x - 4)$
 $24 = a(3 + 3)(3 - 4)$
 $24 = -6a$
 $a = -4$
 $y = -4(x + 3)(x - 4)$
d) $y = a(x + 1)(x - 5)$
 $-10 = a(4 + 1)(4 - 5)$
 $-10 = -5a$
 $a = 2$
 $y = 2(x + 1)(x - 5)$
e) $y = a(2x + 1)(2x - 3)$
 $9 = -3a$
 $a = -3$
 $y = -3(2x + 1)(2x - 3)$

- a) i) x-intercepts are -4 and 1
 - ii) above the *x*-axis: x < -4 and x > 1below the *x*-axis: -4 < x < 1
- **b)** i) x-intercepts are -1, 1 and 2
 - ii) above the *x*-axis: -1 < x < 1 and x > 2below the *x*-axis: x < -1 and 1 < x < 2
- c) i) x-intercepts are -2, -1, 1, and 2
 - ii) above the x-axis: -2 < x < -1 and 1 < x < 2below the x-axis: x < -2 and -1 < x < 1 and x > 2

The Remainder Theorem

Chapter 2 Section 1

Question 1 Page 91

Chapter 2 Section 1

Question 2 Page 91

a)
a)

$$\frac{f_{4}^{2} + f_{2}^{2} + f_{3}^{2} + f_{3}$$

d)
$$(3x-4)(x^3-2x+3)+4 = 3x^4-6x^2+9x-4x^3+8x-12+4$$

= $3x^4-4x^3-6x^2+17x-8$

Question 3 Page 91

$$\frac{-4x^{2} + 11x - 7}{x - 3} = -4x^{3} - 12x^{2} - 36x - 97 - \frac{298}{x - 3}, \ x \neq 3$$

Done

 $36 \cdot x =$ 97

e)

$$\frac{f_{12}^{4}}{f_{00}^{5}f_{11}^{2}f_{2}^{2}} \frac{f_{12}^{5}}{f_{2}^{5}} \frac{f_{14}^{4}}{f_{14}^{5}} \frac{f_{2}^{5}}{f_{2}^{5}} \frac{f_{14}^{4}}{f_{14}^{5}} \frac{f_{2}^{5}}{f_{2}^{5}} \frac{f_{14}^{5}}{f_{14}^{5}} \frac{f_{2}^{5}}{f_{2}^{5}} \frac{f_{14}^{5}}{f_{2}^{5}} \frac{f$$

g)

F1+ F2+ F3+ F4+ F5 F6 Too1sA19ebraCa1cOtherPr9mlOClea	it n Up	F1+ F2+ F3+ F3+ ToolsA19ebraCalc00	F4+ F5 F6+ ther Pr9ml0 Clean Up
■ NewProb	Done	■ NewProb	Don
• propFrac $\left(\frac{8 \cdot x^3 + 6 \cdot x^2}{4 \cdot x - 3}\right)$	<u>- 6</u>]	■ propFrac	$\frac{\times^3 + 6 \cdot \times^2 - 6}{4 \cdot \times - 3} \Big)$
$\frac{3}{4\cdot(4\cdot x-3)}+2\cdot x^2+3\cdot x^2$	x + 9)	$4\frac{3}{(4\cdot \times -3)}$ +	2·× ² + 3·× + 9/
c((8x^3+6x^2-6)/(4x-3 MAIN BAD EXACT FUNC	2/30	c((8x^3+6x^) Main 800.58	2-6)/(4x-3)) ACT FUNC 2/3
$8x^3 + 6x^2 - 6$	9	3	3
$\frac{1}{4x-3} = 2x^2 + \frac{1}{2x^2} + \frac{1}{2x^2$	3x + - + 4	$\overline{4(4x-3)}$, $x \neq$	4
4x - 3	4	$4(4x-3)^{(n+1)}$	4

Question 4 Page 91

a)
$$(2x-3)(3x+4) + R = 6x^2 - x + 15$$

 $6x^2 + 8x - 9x - 12 + R = 6x^2 - x + 15$
 $R = 6x^2 - 6x^2 - x - 8x + 9x + 15 + 12$
 $R = 27$

b)
$$(x+2)(x^2-3x+4) + R = x^3 - x^2 - 2x - 1$$
$$x^3 - 3x^2 + 4x + 2x^2 - 6x + 8 + R = x^3 - x^2 - 2x - 1$$
$$R = x^3 - x^3 - x^2 + 3x^2 - 2x^2 - 2x - 4x + 6x - 1 - 8$$
$$R = -9$$

c)
$$(x-4)(2x^{2}+3x-1) + R = 2x^{3} - 5x^{2} - 13x + 2$$
$$2x^{3} + 3x^{2} - x - 8x^{2} - 12x + 4 + R = 2x^{3} - 5x^{2} - 13x + 2$$
$$R = 2x^{3} - 2x^{3} - 5x^{2} - 3x^{2} + 8x^{2} - 13x + x + 12x + 2 - 4$$
$$R = -2$$

Chapter 2 Section 1

Question 5 Page 91

 $2x^3 + 17x^2 + 38x + 15 = (x + 5)(x + 3)(2x + 1)$ The possible dimensions of the box are (x + 5) cm by (x + 3) cm by (2x + 1) cm.

Chapter 2 Section 1

Question 6 Page 91

 $9x^{3} + 24x^{2} - 44x + 16 = (x+4)(3x-2)^{2}$

The possible dimensions of the box are (3x - 2) cm by (3x - 2) cm by (x + 4) cm.

Question 7 Page 91

a)
$$P(-1) = 2(-1)^3 + 7(-1)^2 - 8(-1) + 3$$

= $-2 + 7 + 8 + 3$
= 16
b) $P(2) = 2(2)^3 + 7(2)^2 - 8(2) + 3$

b)
$$P(2) = 2(2)^3 + 7(2)^2 - 8(2) + 3$$

= 16 + 28 - 16 + 3
= 31

c)
$$P(-3) = 2(-3)^3 + 7(-3)^2 - 8(-3) + 3$$

= -54 + 63 + 24 + 3
= 36

d)
$$P(4) = 2(4)^3 + 7(4)^2 - 8(4) + 3$$

= 128 + 112 - 32 + 3
= 211

e)
$$P(1) = 2(1)^3 + 7(1)^2 - 8(1) + 3$$

= 2 + 7 - 8 + 3
= 4

Chapter 2 Section 1

Question 8 Page 91

a)
$$P(-2) = (-2)^3 + 3(-2)^2 - 5(-2) + 2$$

 $= -8 + 12 + 10 + 2$
 $= 16$
b) $P(-2) = 2(-2)^3 - (-2)^2 - 3(-2) + 1$
 $= -16 - 4 + 6 + 1$
 $= -13$
c) $P(-2) = (-2)^4 + (-2)^3 - 5(-2)^2 + 2(-2)^2$

c)
$$P(-2) = (-2)^4 + (-2)^3 - 5(-2)^2 + 2(-2) - 7$$

= 16 - 8 - 20 - 4 - 7
= -23

Question 9 Page 91

a)
$$P(-3) = (-3)^3 + 2(-3)^2 - 3(-3) + 9$$

= $-27 + 18 + 9 + 9$
= 9

b)
$$P(-2) = 2(-2)^3 + 7(-2)^2 - (-2) + 1$$

= -16 + 28 + 2 + 1
= 15

c)
$$P(3) = (3)^3 + 2(3)^2 - 3(3) + 5$$

= 27 + 18 - 9 + 5
= 41

d)
$$P(2) = (2)^4 - 3(2)^2 - 5(2) + 2$$

= 16 - 12 - 10 + 2
= -4

Chapter 2 Section 1

Question 10 Page 92

a)
$$P(-1) = k(-1)^3 + 5(-1)^2 - 2(-1) + 3$$

 $7 = -k + 5 + 2 + 3$
 $k = 10 - 7$
 $k = 3$

b)
$$P(3) = 3(3)^3 + 5(3)^2 - 2(3) + 3$$

= 81 + 45 - 6 + 3
= 123

Chapter 2 Section 1

Question 11 Page 92

a) $f(2) = (2)^4 - c(2)^3 + 7(2) - 6 = -8$ -8 = 16 - 8c + 14 - 6 8c = 24 - 8c = 4

b)
$$f(-2) = (-2)^4 - 4(-2)^3 + 7(-2) - 6$$

= 16 + 32 - 14 - 6
= 28

c)		
í	F1+ F2+ F3+ F4+ F5 F6 ToolsA19ebraCalcOtherPr9mIOClean	∎D
	■ NewProb	Done
	■Define f(x)=x ⁴ -4·x ³	+7 🕨
		Done
	■ f(-2)	28
	f(-2)	
	MAIN BAD EXACT FUNC	3/30

Question 12 Page 92

$$P(2) = -2(2)^{3} + b(2)^{2} - 5(2) + 2$$

= -16 + 4b - 10 + 2
= 4b - 24
Since the remainders are equal,
 $4b - 24 = b + 9$
 $3b = 33$
 $b = 11$
$$P(-1) = -2(-1)^{3} + b(-1)^{2} - 5(-1) + 2$$

= 2 + b + 5 + 2
= b + 9

Chapter 2 Section 1

Question 13 Page 92

Question 14 Page 92

$$f(1) = (1)^{3} + 6(1)^{2} + k(1) - 4$$

$$= 1 + 6 + k - 4$$

$$= k + 3$$

Since the remainders are equal,

$$k + 3 = -2k + 12$$

$$3k = 9$$

$$k = 3$$

$$f(-2) = (-2)^{3} + 6(-2)^{2} + k(-2) - 4$$

$$= -8 + 24 - 2k - 4$$

$$= -2k + 12$$

Chapter 2 Section 1

a)
$$P\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + 5\left(-\frac{1}{2}\right)^2 - 6\left(-\frac{1}{2}\right) + 4$$

 $= -\frac{1}{4} + \frac{5}{4} + 3 + 4$
 $= 8$
b) $2x + 1\overline{\smash{\big)}2x^3 + 5x^2 - 6x + 4}$
 $\frac{2x^3 + x^2}{4x^2 - 6x}$
 $\frac{4x^2 + 2x}{4x^2 - 6x}$

$$\frac{2x^{3} + x^{2}}{4x^{2} - 6x}$$

$$\frac{4x^{2} + 2x}{-8x + 4}$$

$$\frac{-8x - 4}{8}$$

c)

(F1+) F2+ Too1s A19ebr	aCalcOtherF	FS F r9ml0C1ec	6+ 1n Up
- Maria Dia a	1-		D
■ NewFro	D D(V)=2-	J3+5.	2_
- Der The	P(\)-2	^ · ·	Done
■ p(- 1/2 p(-1/2)	2)		8
MAIN	RAD EXACT	FUNC	3/30

Question 15 Page 92

a)
$$P\left(\frac{3}{2}\right) = 10\left(\frac{3}{2}\right)^4 - 11\left(\frac{3}{2}\right)^3 - 8\left(\frac{3}{2}\right)^2 + 7\left(\frac{3}{2}\right) + 9$$

$$= \frac{405}{8} - \frac{297}{8} - 18 + \frac{21}{2} + 9$$
$$= 15$$

b)

(F1+) F2+ Tools Al9ebro	(F3+) F4+ CalcOther F	FS F Pr9mIDClea	67 In UP
NewProb	,		Done
■Define	p(x) = 16)·× ⁴ − 1	1 ·× ³)
			Done
■ p(3/2)			15
p(3/2)			
MAIN	RAD EXACT	FUNC	3/30

Chapter 2 Section 1

Question 16 Page 92

a)
$$P\left(\frac{2}{3}\right) = 6\left(\frac{2}{3}\right)^3 + 23\left(\frac{2}{3}\right)^2 - 6\left(\frac{2}{3}\right) - 8$$

= $\frac{16}{9} + \frac{92}{9} - 4 - 8$
= 0

b) (3x-2) is a factor of $6x^3 + 23x^2 - 6x - 8$ since there is no remainder.

c)

F1+ F2+ F3+ F4+ F5 F6+ ToolsA19ebraCa1cOtherPr9mIOClean UP
$= \operatorname{propErac} \left(\frac{6 \cdot x^3 + 23 \cdot x^2 - 6}{6 \cdot x^3 + 23 \cdot x^2 - 6} \right)$
2.v ² +9.v+4
= factor $(2 \cdot x^2 + 9 \cdot x + 4)$
$(\times + 4) \cdot (2 \cdot \times + 1)$
factor(2x^2+9x+4)
MAIN RAD EXACT FUNC 3/30

(3x-2)(x+4)(2x+1)

Question 17 Page 92

a)

 $\pi(9x^2 + 14x + 16)$; this result represents the area of the base of the cylindrical container, i.e., the area of a circle.

b)

F1+ F2+ F3+ F4 Tools[0]9ebra[Ca]c[0]th	er Praminiciean Up
■ propFrac	τ·×* + 51·π·×*
9·π·× ²	^ · + 24 · л · × + 16 · л
factor(π·(9·	× ² + 24 · × + 16))
	$\pi \cdot (3 \cdot \times + 4)^2$
$factor(\pi(9x^2$	+24x+16))
MAIN BAD EXA	CT FUNC 3/30

 $\pi(3x+4)^2(x+3)$

c) Volumes are given to the nearest cubic centimetre.

Value of x	Radius (cm)	Height (cm)	Volume (cm ³)
2	10	5	1 571
3	13	6	3 186
4	16	7	5 630
5	19	8	9 073
6	22	9	13 685
7	25	10	19 635
8	28	11	27 093

Question 18 Page 92

a)
$$-5t^{2} + 15t + 1 = (t - b)(-5t - 5b + 15) - 5b^{2} + 15b + 1$$

b) $Q(t) = \frac{h(t) - h(b)}{t - b}$
 $= \frac{-5t^{2} + 15t + 1 - [-5b^{2} + 15b + 1]}{t - b}$
 $= \frac{-5t^{2} + 15t + 1 + 5b^{2} - 15b - 1}{t - b}$
 $= \frac{-5(t^{2} - b^{2}) + 15(t - b)}{t - b}$
 $= \frac{-5(t - b)(t + b) + 15(t - b)}{t - b}$
 $= \frac{(t - b)[-5(t + b) + 15]}{t - b}$
 $= -5t - 5b + 15$
Rearrange the division statement from part a).
 $\frac{-5t^{2} + 15t + 1 - [-5b^{2} + 15b + 1]}{t - b} = -5t - 5b + 15$

- c) The instantaneous rate of change at t for the function h(t). Diagrams may vary depending on choice of b. All should be linear graphs with a slope of -5 and a *y*-intercept of 15 - 5b.
- d) Answers may vary. A sample solution is shown. At t = b there is a hole in the graph; the graph is discontinuous at t = b.
- e) $h(3) = -5(3)^2 + 15(3) + 1$ = -45 + 45 + 1 = 1
 - At 3 s, the height of the javelin is 1 m.

a) $h(1.5) = -5(1.5)^2 + 8.3(1.5) + 1.2$ = -11.25 + 12.45 + 1.2 = 2.4

b) At 1.5 s the shot put is 2.4 m above the ground.

Chapter 2 Section 1

Question 20 Page 93

$$m(-3)^{3} - 3(-3)^{2} + n(-3) + 2 = -1$$

$$-27m - 27 - 3n + 2 = -1$$

$$-27m - 3n = 24$$

$$9m + n = -8$$
Subtract the two equations to solve for m.

$$9m + n = -8$$

$$-4m + n = 3$$

$$5m = -11$$

$$m = -\frac{11}{5}$$
Substitute m into $4m + n = 3$ to solve for n.

$$4\left(-\frac{11}{5}\right) + n = 3$$

$$n = 3 + \frac{44}{5}$$

$$n = \frac{59}{5}$$

Question 21 Page 93

$$3(2)^{3} + a(2)^{2} + b(2) - 9 = -5$$

$$24 + 4a + 2b - 9 = -5$$

$$4a + 2b = -20$$

$$2a + b = -10$$

Add the two equations to solve for a.

$$2a + b = -10$$

$$a - b = -4$$

$$3a = -14$$

$$a = -\frac{14}{3}$$

Substitute a into $a - b = -4$ to solve for b.

$$-\frac{14}{3} - b = -4$$

$$b = -\frac{14}{3} + 4$$

$$b = -\frac{2}{3}$$

Chapter 2 Section 1

$$3(-k)^{2} + 10(-k) - 3 = 5$$

$$3k^{2} - 10k - 8 = 0$$

$$(3k + 2)(k - 4) = 0$$

$$k = -\frac{2}{3} \text{ or } k = 4$$

Chapter 2 Section 1

$$4) \overline{x} \qquad x-3) \overline{x}$$

$$\frac{x-3}{3} \qquad \frac{x-3}{3}$$

$$x-3 = 4$$

$$x = 7$$
Substitute $x = 7$ into $\frac{5x}{4}$.
$$\frac{35}{4} = 8 \text{ R3}$$
The remainder is 3.

Question 22 Page 93

Question 23 Page 93

Question 24 Page 93

$$a = BC$$

= $\sqrt{(3-4)^2 + (2-8)^2}$
= $\sqrt{1+36}$
= $\sqrt{37}$
b = AC
= $\sqrt{(6-4)^2 + (4-8)^2}$
= $\sqrt{4+16}$
= $\sqrt{20}$
c = AB
= $\sqrt{(6-3)^2 + (4-2)^2}$
= $\sqrt{9+4}$
= $\sqrt{13}$
s = $\frac{1}{2}(\sqrt{37} + \sqrt{20} + \sqrt{13})$
 $\doteq 7.08$
 $A \doteq \sqrt{7.08(7.08 - \sqrt{37})(7.08 - \sqrt{20})(7.08 - \sqrt{13})}$

Chapter 2 Section 1

Question 25 Page 93

If a right triangle is inscribed in a circle, then its hypoteneuse is a diameter of the circle. The median, MK, is the radius of the circle. HM is half the diameter which is the radius, therefore HM = MK.

Chapter 2 Section 2	The Factor Theorem
Chapter 2 Section 2	Question 1 Page 102
a) $x - 4$	
b) $x + 3$	
c) $3x-2$	
d) $4x + 1$	
Chapter 2 Section 2	Question 2 Page 102
a) $P(-3) = (-3)^3 + (-3)^2 - (-3) + 6$ = -27 + 9 + 3 + 6 = -9 No.	
b) $P(-3) = 2(-3)^3 + 9(-3)^2 + 10(-3) + 3$ = -54 + 81 - 30 + 3 = 0 Yes.	
c) $P(-3) = (-3)^3 + 27$ = -27 + 27 = 0	

Yes.

Chapter 2 Section 2

Question 3 Page 102

a) $P(-4) = (-4)^3 + 3(-4)^2 - 6(-4) - 8$ = -64 + 48 + 24 - 8 = 0

Since the remainder is zero, P(x) is divisible by (x + 4) and (x + 4) is a factor of P(x). $P(-1) = (-1)^3 + 3(-1)^2 - 6(-1) - 8$ = -1 + 3 + 6 - 8

= 0

Since the remainder is zero, P(x) is divisible by (x + 1) and (x + 1) is a factor of P(x). $P(2) = (2)^3 + 3(2)^2 - 6(2) - 8$ = 8 + 12 - 12 - 8

$$= 0$$

Since the remainder is zero, P(x) is divisible by (x - 2) and (x - 2) is a factor of P(x).

$$P(x) = (x-2)(x+1)(x+4)$$

b)
$$P(-6) = (-6)^3 + 4(-6)^2 - 15(-6) - 18$$

= -216 + 144 + 90 - 18
= 0

Since the remainder is zero, P(x) is divisible by (x + 6) and (x + 6) is a factor of P(x). $P(-1) = (-1)^3 + 4(-1)^2 - 15(-1) - 18$ = -1 + 4 + 15 - 18 = 0Since the remainder is zero, P(x) is divisible by (x + 1) and (x + 1) is a factor of P(x). $P(3) = (3)^3 + 4(3)^2 - 15(3) - 18$ = 27 + 36 - 45 - 18= 0

Since the remainder is zero, P(x) is divisible by (x - 3) and (x - 3) is a factor of P(x).

$$P(x) = (x - 3)(x + 1)(x + 6)$$

c)
$$P(-3) = (-3)^3 - 3(-3)^2 - 10(-3) + 24$$

= -27 - 27 + 30 + 24
= 0

Since the remainder is zero, P(x) is divisible by (x + 3) and (x + 3) is a factor of P(x). $P(2) = (2)^3 - 3(2)^2 - 10(2) + 24$

$$= 8 - 12 - 20 + 24$$

= 0

Since the remainder is zero, P(x) is divisible by (x - 2) and (x - 2) is a factor of P(x). $P(4) = (4)^3 - 3(4)^2 - 10(4) + 24$ = 64 - 48 - 40 + 24= 0

Since the remainder is zero, P(x) is divisible by (x - 4) and (x - 4) is a factor of P(x).

$$P(x) = (x - 4)(x - 2)(x + 3)$$

Question 4 Page 102

a $P(x) = x^3 + x^2 - 9x - 9$ Group the first two terms and factor out x^2 . Then, group the second two terms and factor out -9. $P(x) = x^{2}(x+1) - 9(x+1)$ Factor out x + 1 and then factor the difference of squares $P(x) = (x+1)(x^2 - 9)$ = (x + 1)(x - 3)(x + 3)

P(x) = (x + 1)(x - 3)(x + 3)

b) $P(x) = x^3 - x^2 - 16x + 16$ Group the first two terms and factor out x^2 . Then, group the second two terms and factor out -16. $P(x) = x^{2}(x-1) - 16(x-1)$ Factor out x - 1 and then factor the difference of squares. $P(x) = (x-1)(x^2 - 16)$

$$= (x - 1)(x - 4)(x + 4)$$

P(x) = (x-1)(x-4)(x+4)

c)
$$P(x) = 2x^3 - x^2 - 72x + 36$$

Group the first two terms and factor out x^2 . Then, group the second two terms and factor out -36. $P(x) = x^2(2x - 1) - 36(2x - 1)$ Factor out 2x - 1 and then factor the difference of squares. $P(x) = (2x - 1)(x^2 - 36)$ =(2x-1)(x-6)(x+6)

$$P(x) = (2x - 1)(x - 6)(x + 6)$$

d)
$$P(x) = x^3 - 7x^2 - 4x + 28$$

2

Group the first two terms and factor out x^2 . Then, group the second two terms and factor out -4. $P(x) = x^{2}(x-7) - 4(x-7)$ Factor out x - 7 and then factor the difference of squares. $P(x) = (x - 7)(x^2 - 4)$ =(x-7)(x-2)(x+2)

P(x) = (x - 7)(x - 2)(x + 2)

e) $P(x) = 3x^3 + 2x^2 - 75x - 50$

Group the first two terms and factor out x^2 . Then, group the second two terms and factor out -25. $P(x) = x^2(3x + 2) - 25(3x + 2)$ Factor out 3x + 2 and then factor the difference of squares. $P(x) = (3x + 2)(x^2 - 25)$ = (3x + 2)(x - 5)(x + 5)

P(x) = (3x+2)(x-5)(x+5)

f) $P(x) = 2x^4 + 3x^3 - 32x^2 - 48x$ Group the first two terms and factor out x^3 . Then, group the second two terms and factor out -16x. $P(x) = x^3(2x+3) - 16x(2x+3)$ Factor out (2x+3) and then factor $x^3 - 16x$. $P(x) = (2x+3)(x^3 - 16x)$ = x(2x+3)(x-4)(x+4)

$$P(x) = x(2x+3)(x-4)(x+4)$$

Chapter 2 Section 2

Question 5 Page 102

a) $P(x) = 3x^3 + x^2 - 22x - 24$

Let *b* represent the factors of the constant term -24, which are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12$, and ± 24 .

Let *a* represent the factors of the constant term 3, which are ± 1 and ± 3 .

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{3}, \pm \frac{2}{1}, \pm \frac{2}{3}, \pm \frac{3}{1}, \pm \frac{3}{3}, \pm \frac{4}{1}, \pm \frac{4}{3}, \pm \frac{6}{1}, \pm \frac{6}{3}, \pm \frac{8}{1}, \pm \frac{8}{3}, \pm \frac{12}{1}, \pm \frac{12}{3}, \pm \frac{24}{1}, \pm \frac{24}{3}$.

Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

F1+ F2+ ToolsAl9ebro	GalcOther Pi	FS F6 r9ml0(Clear	
∎Define	P(×) =3·	× ³ + × ²	- 22
			Done
■ p(3)			0.
■ P(12) ■ p(147	、 、		0.
= p(=4/3) p(=4/3)	,		0.
MAIN	RAD APPROX	FUNC	5/30

The zeros are 3, -2, and $-\frac{4}{3}$.

The corresponding factors are (x - 3), (x + 2), and (3x + 4).

$$3x^{3} + x^{2} - 22x - 24 = (x - 3)(x + 2)(3x + 4)$$

b) $P(x) = 2x^3 - 9x^2 + 10x - 3$

Let *b* represent the factors of the constant term -3, which are ± 1 and ± 3 . Let *a* represent the factors of the constant term 2, which are ± 1 and ± 2 .

The possible values of
$$\frac{b}{a}$$
 are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}$.

Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

F1+ F2+ Tools Algebra	F3+ F4+ CalcOtherP	FS F F3MIDClea	6+ 3N UP
	, ,3_a.	$v^{2} + 10$	9. v - 3
- 10(X) - 2	- ^ - 2.	~ +10	Done
■ p(3)			0.
■ p(1)			Θ.
■ p(1/2)			Θ.
p(1/2)			
MAIN	RAD APPROX	FUNC	5/30

The zeros are 3, 1, and $\frac{1}{2}$.

The corresponding factors are (x - 3), (x - 1), and (2x - 1).

 $2x^3 - 9x^2 + 10x - 3 = (x - 3)(x - 1)(2x - 1)$

c) $P(x) = 6x^3 - 11x^2 - 26x + 15$

Let *b* represent the factors of the constant term 15, which are $\pm 1, \pm 3, \pm 5$, and ± 15 . Let *a* represent the factors of the constant term 6, which are $\pm 1, \pm 2, \pm 3$, and ± 6 .

The possible values of $\frac{b}{a}$ are

$$\pm\frac{1}{1}, \pm\frac{1}{2}, \pm\frac{1}{3}, \pm\frac{1}{6}, \pm\frac{3}{1}, \pm\frac{3}{2}, \pm\frac{3}{3}, \pm\frac{3}{6}, \pm\frac{5}{1}, \pm\frac{5}{2}, \pm\frac{5}{3}, \pm\frac{5}{6}, \pm\frac{15}{1}, \pm\frac{15}{2}, \pm\frac{15}{3}, \pm\frac{15}{6}, \pm\frac{15}{3}, \pm\frac{15}{3}, \pm\frac{15}{6}, \pm\frac{15}{3}, \pm\frac{15}{3}, \pm\frac{15}{6}, \pm\frac{15}{3}, \pm\frac{15}{3}, \pm\frac{15}{6}, \pm\frac{15}{3}, \pm\frac{15}{3},$$

Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

F1+ F2+ Tools Algebro	F3+ F4+ CalcOtherPr	F5 F6+ '9ml0C1ean Up DOTTE
• 4 <) =6 · >	< ³ - 11 · ×	² - 26·×+15
■ p(3)		Done 0.
■ p(1/2)		0.
■ p(- 5/3)	Θ
P(-5/3) MAIN	RAD EXACT	FUNC 5/30

The zeros are 3, $\frac{1}{2}$, and $-\frac{5}{3}$. The corresponding factors are (x - 3), (2x - 1), and (3x + 5).

$$6x^3 - 11x^2 - 26x + 15 = (x - 3)(2x - 1)(3x + 5)$$

d) $P(x) = 4x^3 + 3x^2 - 4x - 3$

Let *b* represent the factors of the constant term $-3, \pm 1$, and ± 3 . Let *a* represent the factors of the constant term $4, \pm 1, \pm 2$, and ± 4 .

The possible values of
$$\frac{b}{a}$$
 are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{4}$.

Test the values of $\frac{b}{a}$ for x to find the zeros using a graphing calculator.

F1+ F2+ Tools Algebra	F3+ F4+ Ca1cOther	F5 Pr9mi0	F6+ Clean Up	\square
	, 	72	- 4. v	- 3
- • P(x) -		3·X	- 4 · ×	one
■ p(1)				- 0
■ p(~1)				- 0
■ p(= 3/4))			- 0
p(-3/4)				
MAIN	RAD EXACT	FUN	IC 9	\$230

The zeros are 1, -1, and $-\frac{3}{4}$.

The corresponding factors are (x - 1), (x + 1), and (4x + 3).

 $4x^{3}+3x^{2}-4x-3 = (x-1)(x+1)(4x+3)$

Chapter 2 Section 2

Question 6 Page 102

a)

F1+ F2+ Tools Algeb	r F3+ F4+ raCa1cOther	F5 F1 Pr9mI0C1ea	i∓ n U⊳
- 116.001	00		DOLLE
• ∜ fine	$P(x) = x^3$	+ 2·×2.	- x - 2
			Done
■ p(1)			Θ
■ p(~1)			e
■ p(-2)			G
p(-2)			
MelN	Pen Evect	FUNC	5/20

The zeros are 1, -1, and -2. The corresponding factors are (x - 1), (x + 1), and (x + 2).

$$x^{3} + 2x^{2} - x - 2 = (x - 1)(x + 1)(x + 2)$$

b)

• $\P_{P} = P(x) = x^{3} + 4 \cdot x^{2} - 7 \cdot x - D_{0}$ • $P(2)$ • $p(-1)$	10
■ p(2) ■ p(-1)	10
= p(±) ■ p(±1)	one 0
	0
■ p(-5)	Θ
P(-5)	

The zeros are -5, -1, and 2. The corresponding factors are (x - 2), (x + 1), and (x + 5). $x^{3} + 4x^{2} - 7x - 10 = (x - 2)(x + 1)(x + 5)$

c)				
	F1+ F2+ Tools Algebr	alCa1clOtherlPi	F5 í F6+ r9ml0C1ean	ue Ì
	- 116/01 1 0	0		Done
	• • P(x)=x ³ -5·	× ² – 4·×	: + 20
				Done
	■ p(-2)			Θ
	P(2)			0
	■ p(5)			Θ
	P(5)			
	MAIN	RAD EXACT	FUNC	5/30

The zeros are -2, 2, and 5. The corresponding factors are (x - 5), (x - 2), and (x + 2).

$$x^{3} - 5x^{2} - 4x + 20 = (x - 5)(x - 2)(x + 2)$$

d)

F4+ F5 IcOtherPr9mi	F6+ IOC1ean UP	
7	Done	
•x ³ + 5·x	⁴ + 3·x − 4	
	0 0	
D FNACT F	UNC 2420	
	$\frac{1}{10000000000000000000000000000000000$	к[Шћег]Рт9мШ[Стеан Шр] Done :× ³ + 5 · × ² + 3 · × − 4 Done 6

The zero is -4. The corresponding factors are (x + 4) and $(x^2 + x - 1)$. $x^3 + 5x^2 + 3x - 4 = (x + 4)(x^2 + x - 1)$

e)

F1+ F2+ Tools Algebro	F3+ F4+ CalcOtherF	FS FI r9ml0Clea	67 In UP
- Hewrition	· · · · ·		DOLLE
• f p(x) =	=× ³ - 4·>	(² – 11 ·	x + 30
			Done
■ p(-3)			Θ
P(2)			0
■ p(5)			Θ
P(5)			
MAIN	RAD EXACT	FUNC	5/30

The zeros are -3, 2, and 5. The corresponding factors are (x - 5), (x - 2), and (x + 3). $x^3 - 4x^2 - 11x + 30 = (x - 5)(x - 2)(x + 3)$.

f)

F1+ F2+ Tools Algebr	aCalcOtherP	FS F6+ r9ml0C1ean U	P)
■<) =×	-4·× -×	- + 16 ×	- 12
		[Jone
■ p(-2)			0
■ p(1)			0
■ p(2)			0
■ p(3)			0
MAIN	PAD EVACT	FUNC	6/20

The zeros are -2, 1, 2, and 3. The corresponding factors are (x - 3), (x + 2), (x - 1), and (x - 2). $x^4 - 4x^3 - x^2 + 16x - 12 = (x - 3)(x + 2)(x - 1)(x - 2)$

g)				
	F1+ F2+ Tools Algebro	F3+ F4+ CalcOther	F5 Fé Pr9mI0C1ea	i- n Up
	Define	P(X) = X	- 2·×-	-13-
				Done
	■ p(-3)			Θ
	■ p(-1)			Θ
	■ p(2)			Θ
	■ p(4)			Θ
	P(4)			
	MAIN	RAD EXACT	FUNC	8/30

The zeros are -3, -1, 2, and 4. The corresponding factors are (x - 4), (x - 2), (x + 1), and (x + 3). $x^4 - 2x^3 - 13x^2 + 14x + 24 = (x - 4)(x - 2)(x + 1)(x + 3)$

Chapter 2 Section 2

Question 7 Page 102

a)

F1+ F2+ F3+ F4+ ToolsA19ebraCalcOtherPr	FS F6+ 9ml0 C1ean Up	F1+ F2+ F3+ F4+ F5 ToolsA19ebraCalcOtherPr9ml
NewProb	Done	■ p(1/2)
■Define p(x)=8·>	< ³ + 4·× ² − ▶	■ p(= 1/2)
	Done	8·× ³ +4·× ²
■ p(1/2)	Θ	$-rac (2 \cdot x + 1) \cdot (2 \cdot x + $
■ p(= 1/2)	0	
		2*x-1)/((2*x+1)*(
MAIN BAD EXACT	FUNC 4/30	MAIN BAD EXACT FI

The zeros are $\frac{1}{2}$ and $-\frac{1}{2}$ (order 2). The corresponding factors are (2x - 1) and $(2x + 1)^2$. $8x^3 + 4x^2 - 2x - 1 = (2x - 1)(2x + 1)^2$

b)

F1- Tools A15	F2+ F3+ F4+ PebraCa1cOtherP	F5 F1 r9ml0(Clea	б≁ n Up
- 116.01	100		DOLLE
• 4he	p(x) =2·x ³ ·	+5·x ² ·	- x - 6
			Done
■ p(-2	2)		6
■ p(- 3	3/2)		6
P(1)			6
P(1)			
MAIN	RAD EXACT	FUNC	5/30

The zeros are -2, $-\frac{3}{2}$, and 1. The corresponding factors are (x - 1), (x + 2), and (2x + 3). $2x^3 + 5x^2 - x - 6 = (x - 1)(x + 2)(2x + 3)$

c)

F1+ F2+ Tools Algebro	aCalcOther	F5 F5 F9MIDC1ea	it n Up
	· · ·		DOLLE
• 4 >(x) =!	5·× ³ +3	× ² – 12	·×+4
			Done
■ p(-2)			Θ
■ p(2/5)			0
■ p(1)			Θ
P(1)			
MAIN	RAD EXACT	FUNC	5/30

The zeros are -2, $\frac{2}{5}$, and 1. The corresponding factors are (x - 1), (x + 2), and (5x - 2). $5x^3 + 3x^2 - 12x + 4 = (x - 1)(x + 2)(5x - 2)$ d)

F1+ F2+ Tools Algeb	raCa1cOtherP	F5 F6 r9mi0Clear	Up
• 5(X) = 6	•·×·+×-•	- 8·x	Done
■ p(1)			0
■ p(† 2/2	3)		Θ
■ p(1/2)			0
■ p(1)			Θ
P(1)			
MAIN	RAD EXACT	FUNC	6/30

The zeros are $-1, -\frac{2}{3}, \frac{1}{2}$, and 1.

The corresponding factors are (x - 1), (x + 1), (2x - 1), and (3x + 2). $6x^4 + x^3 - 8x^2 - x + 2 = (x - 1)(x + 1)(2x - 1)(3x + 2)$

e)

F1+ F2 Too1s A19el	+ F3+ F4+ praCa1cOtherP	FS F6+ r9ml0Clean Up
■ p(-2)		0
■ p(2)		0
45·×4	+ x ³ - 22 ·	$\times^2 - 4 \cdot \times + 8$
- 1	(×+2)·(:	x-2)
		5·× ² + × − 2
2×^2-	4x+8)/((x·	+2)(x-2)))
MAIN	RAD EXACT	FUNC 5/30

The zeros are -2 and 2. The corresponding factors are (x - 2), (x + 2), and $(5x^2 + x - 2)$. $5x^4 + x^3 - 22x^2 - 4x + 8 = (x - 2)(x + 2)(5x^2 + x - 2)$

f)

F1+ F2+ Tools Algebr	aCalcOther	F5 F6 Pr9mI0Clear	, Ib
- Hewiric ■ 41wb - 3		,2 _ 35.	v = 12
- 1.0/ -3		(- 33)	Done
■ p(-4)			0
■ p(† 1/3	3)		0
■ p(3)			0
P(3)			
MAIN	RAD EXACT	FUNC	5/30

The zeros are -4, $-\frac{1}{3}$, and 3. The corresponding factors are (x - 3), (x + 4), and (3x + 1). $3x^3 + 4x^2 - 35x - 12 = (x - 3)(x + 4)(3x + 1)$

g)

F1+ F2+ Tools Algebra	F3+ F4+ Ca1cOther	F5 F1 Pr9mI0C1ea	it n Up
- HEWLLOD	,		DOLLE
■ 4 (x) =6 ·	× ³ - 17	·× ² + 11	·× - 2
			Done
■ p(1/3)			- 0
■ p(1/2)			Θ
■ p(2)			Θ
P(2)			
MAIN	BAD EXACT	FUNC	5/30

The zeros are $\frac{1}{3}$, $\frac{1}{2}$, and 2. The corresponding factors are (x - 2), (2x - 1), and (3x - 1). $6x^3 - 17x^2 + 11x - 2 = (x - 2)(2x - 1)(3x - 1)$

Question 8 Page 102

F1+ F2+ Tools A19ebro	F3+ F4+ CalcOther	F5 Pr9m10(C1	F6+ ean Up DOLLE
• •J(x) =6	5·× ³ + 2	5·× ² +	2·x - 8
■ v(-4)			0
■ v(1/2) ■ v(† 2/3))		0
U(-2/3) MAIN	RAD EXACT	FUNC	5/30

The zeros are -4, $-\frac{2}{3}$, and $\frac{1}{2}$.

The corresponding factors are (x + 4), (2x - 1), and (3x + 2). $6x^3 + 25x^2 + 2x - 8 = (x + 4)(2x - 1)(3x + 2)$

Possible dimensions of the rectangular block of soapstone in cubic metres are (x + 4) by (2x - 1) by (3x + 2).

Chapter 2 Section 2

Question 9 Page 102

$$P(-2) = (-2)^{3} - 2k(-2)^{2} + 6(-2) - 4$$

$$0 = -8 - 8k - 12 - 4$$

$$8k = -24$$

$$k = -3$$

Chapter 2 Section 2

Question 10 Page 102

$$P\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^{3} - 5\left(\frac{2}{3}\right)^{2} + k\left(\frac{2}{3}\right) + 2$$
$$0 = \frac{8}{9} - \frac{20}{9} + \frac{2}{3}k + 2$$
$$-\frac{8}{9} + \frac{20}{9} - \frac{18}{9} = \frac{2}{3}k$$
$$-\frac{2}{3} = \frac{2}{3}k$$
$$k = -1$$

Question 11 Page 102

a)
$$P(1) = 2(1)^3 + 5(1)^2 - 1(1) - 6$$

= 2 + 5 - 1 - 6
= 0

Since the remainder is zero, P(x) is divisible by (x - 1) and (x - 1) is a factor of P(x).

Use division to find the other factors.

$$\frac{2x^{2} + 7x + 6}{x - 1)2x^{3} + 5x^{2} - x - 6}$$

$$\frac{2x^{3} - 2x^{2}}{7x^{2} - x}$$

$$\frac{7x^{2} - 7x}{6x - 6}$$

$$\frac{6x - 6}{0}$$

$$2x^{3} + 5x^{2} - x - 6 = (x - 1)(2x^{2} + 7x - 6)$$

$$2x^{3} + 5x^{2} - x - 6 = (x - 1)(2x^{2} + 7x + 6)$$

= (x - 1)(x + 2)(2x + 3)

b)
$$P(-1) = 4(-1)^3 - 7(-1) - 3$$

= -4 + 7 - 3
= 0

Since the remainder is zero, P(x) is divisible by (x + 1) and (x + 1) is a factor of P(x).

Use division to find the other factors.

$$\frac{4x^{2} - 4x - 3}{x + 1 \sqrt{4x^{3} + 0x^{2} - 7x - 3}}$$

$$\frac{4x^{3} + 4x^{2}}{-4x^{2} - 7x}$$

$$-\frac{4x^{2} - 4x}{-3x - 3}$$

$$\frac{-3x - 3}{0}$$

$$4x^{3} - 7x - 3 = (x + 1)(4x^{2} - 4x - 3)$$

$$= (x + 1)(2x - 3)(2x + 1)$$

c)
$$P(1) = 6(1)^3 + 5(1)^2 - 21(1) + 10$$

= 6 + 5 - 21 + 10
= 0

Since the remainder is zero, P(x) is divisible by (x - 1) and (x - 1) is a factor of P(x).

Use division to find the other factors.

$$\frac{6x^{2} + 11x - 10}{x - 1)6x^{3} + 5x^{2} - 21x + 10}$$

$$\frac{6x^{3} - 6x^{2}}{11x^{2} - 21x}$$

$$\frac{11x^{2} - 11x}{-10x + 10}$$

$$\frac{-10x + 10}{0}$$

$$6x^{3} + 5x^{2} - 21x + 10 = (x - 1)(6x^{2} + 11x - 10)$$

$$= (x - 1)(2x + 5)(3x - 2)$$
d) $P(2) = 4(2)^{3} - 8(2)^{2} + 3(2) - 6$

$$= 32 - 32 + 6 - 6$$

$$= 0$$

Since the remainder is zero, P(x) is divisible by (x - 2) and (x - 2) is a factor of P(x).

Use division to find the other factors.

 $4x^3 - 8x^2 + 3x - 6 = (x - 2)(4x^2 + 3)$

e)
$$P\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) - 1$$

= $\frac{1}{4} + \frac{1}{4} + \frac{1}{2} - 1$
= 0

Since the remainder is zero, P(x) is divisible by (2x - 1) and (2x - 1) is a factor of P(x).

Use division to find the other factors.

$$\frac{x^{2} + x + 1}{2x - 1}$$

$$2x - 1\overline{\smash{\big)}2x^{3} + x^{2} + x - 1}$$

$$\underline{2x^{3} - x^{2}}$$

$$2x^{2} + x$$

$$\underline{2x^{2} - x}$$

$$2x - 1$$

$$\underline{2x - 1}$$

$$0$$

$$2x^{3} + x^{2} + x - 1 = (2x - 1)(x^{2} + x + 1)$$

f) $P(1) = (1)^4 - 15(1)^2 - 10(1) + 24$ = 1 - 15 - 10 + 24 = 0

Since the remainder is zero, P(x) is divisible by (x - 1) and (x - 1) is a factor of P(x).

Use division to find the other factors.

$$\frac{x^{3} + x^{2} - 14x - 24}{x - 1)x^{4} + 0x^{3} - 15x^{2} - 10x + 24}$$

$$\frac{x^{4} - x^{3}}{x^{3} - 15x^{2}}$$

$$\frac{x^{3} - x^{2}}{-14x^{2} - 10x}$$

$$\frac{-14x^{2} + 14x}{-24x + 24}$$

$$\frac{-24x + 24}{0}$$

 $x^{4} - 15x^{3} - 10x + 24 = (x - 1)(x^{3} + x^{2} - 14x - 24)$

Factor
$$x^3 + x^2 - 14x - 24$$
:
 $P(-2) = (-2)^3 + (-2)^2 - 14(-2) - 24$
 $= -8 + 4 + 28 - 24$
 $= 0$

Since the remainder is zero, P(x) is divisible by (x + 2) and (x + 2) is a factor of P(x).

Use division to find the other factors.

$$\frac{x^{2} - x - 12}{x + 2}$$

$$\frac{x^{3} + 2x^{2}}{-x^{2} - 14x - 24}$$

$$\frac{x^{3} + 2x^{2}}{-x^{2} - 14x}$$

$$\frac{-x^{2} - 2x}{-12x - 24}$$

$$\frac{-12x - 24}{0}$$

 $x^{4} - 15x^{3} - 10x + 24 = (x - 1)(x + 2)(x^{2} - x - 12)$ = (x - 4)(x - 1)(x + 2)(x + 3)

Question 12 Page 103

a) i)
$$P(1) = (1)^3 - 1$$

 $= 1 - 1$
 $= 0$

 $f_{1+}^{2} f_{2}^{2} f_{3+}^{2} f_{3+}^{2$

$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

iii)
$$P(3) = (3)^3 - 27$$

= 27 - 27
= 0

Since the remainder is zero, P(x) is divisible by (x - 3) and (x - 3) is a factor of P(x).

Use division to find the other factor.

iv) $P(4) = (4)^3 - 64$ = 64 - 64 = 0

Since the remainder is zero, P(x) is divisible by (x - 4) and (x - 4) is a factor of P(x).

Use division to find the other factor.

$$\begin{array}{c|c}
-4 & 1 & 0 & 0 & -64 \\
\hline -4 & -16 & -64 \\
\hline \times & 1 & 4 & 16 & 0 \\
\hline x^3 - 64 &= (x - 4)(x^2 + 4x + 16)
\end{array}$$
b) $x^3 - a^3 &= (x - a)(x^2 + ax + a^2)$
c) $(x - 5)(x^2 + 5x + 25)$
d) i) $(2x - 1)(4x^2 + 2x + 1)$
ii) $(5x^2 - 2)(25x^4 + 10x^2 + 4)$
iii) $(4x^4 - 3)(16x^8 + 12x^4 + 9)$
iv) $\left(\frac{2}{5}x - 4y^2\right) \left(\frac{4}{25}x^2 + \frac{8}{5}xy^2 + 16y^4\right)$

Chapter 2 Section 2

Question 13 Page 103

iii)
F1+ F2+ F3+ F4+ F5 F6+ ToolsAl9ebraCalcOtherPr9mlOClean UP
■Define p(x)=x ³ +27 Done
■ p(-3) 0
• propFrac $\left(\frac{x^3 + 27}{x + 3}\right)_{-}$
x ² - 3·x + 9
propFrac((x^3+27)/(x+3)) Note: Domain of result may be larger
$x^3 + 27 = (x+3)(x^2 - 3x + 9)$
iv)
F1+ F2+ F3+ F4+ F5 F6+ TooleftachealCalcBthay Brand Lloan Up

/
F1+ F2+ F3+ F4+ F5 F6+ Tools A19ebra Calc Other Pr9ml0 Clean Up
■Define p(x)=x ³ +64 Done
■ p(⁻ 4) 0
■ propFrac $\left(\frac{\times^3 + 64}{\times + 4}\right)$
$\times^2 - 4 \cdot \times + 16$
propFrac((x^3+64)/(x+4))
Note: Domain of result may be lar9er
$x^{3} + 64 = (x + 4)(x^{2} - 4x + 16)$

- **b)** $x^3 + a^3 = (x + a)(x^2 ax + a^2)$
- c) $(x+5)(x^2-5x+25)$

d) i)
$$(2x+1)(4x^2-2x+1)$$

ii)
$$(5x^2+2)(25x^4-10x^2+4)$$

iii)
$$(4x^4 + 3)(16x^8 - 12x^4 + 9)$$

iv) $\left(\frac{2}{5}x+4y^2\right)\left(\frac{4}{25}x^2-\frac{8}{5}xy^2+16y^4\right)$

Question 14 Page 103

 $x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)$ Neither factor has integer zeros so $x^4 + x^2 + 1$ is non-factorable over the integers.

From the graph, you can see there are no zeros.

Question 15 Page 103

a) let
$$m = x^{2}$$

 $4x^{4} - 37x^{2} + 9 = 4m^{2} - 37m + 9$
 $= (m - 9)(4m - 1)$
 $m = 9 \text{ or } m = \frac{1}{4}$
 $x^{2} = 9 \text{ or } x^{2} = \frac{1}{4}$
 $x = \pm 3 \text{ or } x = \pm \frac{1}{2}$
 $4x^{4} - 37x^{2} + 9 = (x - 3)(x + 3)(2x - 1)(2x + 1)$
b) let $m = x^{2}$
 $9x^{4} - 148x^{2} + 64 = 9m^{2} - 148m + 64$
 $= (m - 16)(9m - 4)$
 $m = 16 \text{ or } m = \frac{4}{9}$
 $x^{2} = 16 \text{ or } x^{2} = \frac{4}{9}$
 $x = \pm 4 \text{ or } x = \pm \frac{2}{3}$

 $9x^3 - 148x^2 + 64 = (x - 4)(x + 4)(3x - 2)(3x + 2)$

Question 16 Page 103

Solutions to Achievement Check questions are provided in the Teacher's Resource.

Chapter 2 Section 2

Question 17 Page 103

a) The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}$, $\pm \frac{1}{2}$, $\pm \frac{2}{1}$, $\pm \frac{2}{2}$, $\pm \frac{3}{1}$, $\pm \frac{3}{2}$, $\pm \frac{4}{1}$, $\pm \frac{4}{2}$, $\pm \frac{6}{1}$, $\pm \frac{6}{2}$, $\pm \frac{12}{1}$, $\pm \frac{12}{2}$. Test the values of $\frac{b}{a}$ for x to find the zeros. $P(2) = 2(2)^{5} + 3(2)^{4} - 10(2)^{3} - 15(2)^{2} + 8(2) + 12$ = 64 + 48 - 80 - 60 + 16 + 12= 0 $P(1) = 2(1)^{5} + 3(1)^{4} - 10(1)^{3} - 15(1)^{2} + 8(1) + 12$ = 2 + 3 - 10 - 15 + 8 + 12= 0 $P(-1) = 2(-1)^5 + 3(-1)^4 - 10(-1)^3 - 15(-1)^2 + 8(-1) + 12$ = -2 + 3 + 10 - 15 - 8 + 12= 0 $P(-2) = 2(-2)^{5} + 3(-2)^{4} - 10(-2)^{3} - 15(-2)^{2} + 8(-2) + 12$ = -64 + 48 + 80 - 60 - 16 + 12= 0 $P\left(-\frac{3}{2}\right) = 2\left(-\frac{3}{2}\right)^5 + 3\left(-\frac{3}{2}\right)^4 - 10\left(-\frac{3}{2}\right)^3 - 15\left(-\frac{3}{2}\right)^2 + 8\left(-\frac{3}{2}\right) + 12$ $=-\frac{243}{16}+\frac{243}{16}+\frac{135}{4}-\frac{135}{4}-12+12$ $2x^{5} + 3x^{4} - 10x^{3} - 15x^{2} + 8x + 12 = (x - 2)(x - 1)(x + 1)(x + 2)(2x + 3)$

b) The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{2}{4}, \pm \frac{4}{1}, \pm \frac{4}{2}, \pm \frac{4}{4}, \pm \frac{8}{1}, \pm \frac{8}{2}, \pm \frac{8}{4}$. Test the values of $\frac{b}{a}$ for x to find the zeros. $P(-2) = 4(-2)^6 + 12(-2)^5 - 9(-2)^4 - 51(-2)^3 - 30(-2)^2 + 12(-2) + 8$ = 256 - 384 - 144 + 408 - 120 - 24 + 8 = 0 $P(-1) = 4(-1)^6 + 12(-1)^5 - 9(-1)^4 - 51(-1)^3 - 30(-1)^2 + 12(-1) + 8$ = 4 - 12 - 9 + 51 - 30 - 12 + 8 = 0 $P\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^6 + 12\left(-\frac{1}{2}\right)^5 - 9\left(-\frac{1}{2}\right)^4 - 51\left(-\frac{1}{2}\right)^3 - 30\left(-\frac{1}{2}\right)^2 + 12\left(-\frac{1}{2}\right) + 8$ $= \frac{1}{16} - \frac{3}{8} - \frac{9}{16} + \frac{51}{8} - \frac{15}{2} - 6 + 8$ = 0 $P\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^6 + 12\left(\frac{1}{2}\right)^5 - 9\left(\frac{1}{2}\right)^4 - 51\left(\frac{1}{2}\right)^3 - 30\left(\frac{1}{2}\right)^2 + 12\left(\frac{1}{2}\right) + 8$ $= \frac{1}{16} + \frac{3}{8} - \frac{9}{16} - \frac{51}{8} - \frac{15}{2} + 6 + 8$ = 0 $P(2) = 4(2)^6 + 12(2)^5 - 9(2)^4 - 51(2)^3 - 30(2)^2 + 12(2) + 8$ = 256 + 384 - 144 - 408 - 120 + 24 + 8 = 0

Only found 5 factors and the degree is 6, so one must have order 2. Divide to determine the last factor.

 $4x^{6} + 12x^{5} - 9x^{4} - 51x^{3} - 30x^{2} + 12x + 8 = (x - 2)(x + 1)(x + 2)^{2}(2x - 1)(2x + 1)$

Question 18 Page 103

$$P(2) = 2(2)^{3} + m(2)^{2} + n(2) - 3$$

$$0 = 16 + 4m + 2n - 3$$

$$4m + 2n = -13$$

$$Q(2) = (2)^{3} - 3m(2)^{2} + 2n(2) + 4$$

$$0 = 8 - 12m + 4n + 4$$

$$12m - 4n = 12$$

$$6m - 2n = 6$$

Solve for *n* by adding *Q* and *P*. 10m = -7

$$m = -\frac{7}{10}$$

Substitute *m* into *Q*.
$$6\left(-\frac{7}{10}\right) - 2n = 6$$
$$-2n = 6 + \frac{21}{5}$$
$$-2n = \frac{51}{5}$$
$$n = -\frac{51}{10}$$

Chapter 2 Section 2

Question 19 Page 103

a)
$$P(x) = a(x+4)(4x+3)(2x-1)$$

 $P(-2) = a(2)(-5)(-5)$
 $50 = 50a$
 $a = 1$
Therefore $P(x) = (x+4)(4x+3)(2x-1)$.

b)
$$P(x) = a(x-3)(x+1)(3x-2)(2x+3)$$

 $P(1) = a(-2)(2)(1)(5)$
 $-18 = -20a$
 $a = \frac{9}{10}$
Therefore $P(x) = \frac{9}{10}(x-3)(x+1)(3x-2)(2x+3)$.

Question 20 Page 103

- a) i) $(x-1)(x+1)(x^2+1)$ To help predict a pattern for b); $x^4 - 1$ partially factored is $(x-1)(x^3 + x^2 + x + 1)$.
 - ii) $(x-2)(x+2)(x^2+4)$ To help predict a pattern for b); x^4 - 16 partially factored is $(x-2)(x^3+2x^2+4x+8)$.

iii)

$$\frac{\begin{array}{c} F_{1+}^{5} F_{2+}^{5} F_{3+}^{5} F_{4+}^{6} F_{2}^{5} F_{3}^{6} F_{4}^{6} F_{2}^{5} F_{3}^{6} F_{4}^{6} F_{2}^{6} F_{3}^{6} F_{4}^{6} F_{2}^{6} F_{2}^$$

$$(x-1)(x^4 + x^3 + x^2 + x + 1)$$

iv)

 $\begin{array}{l} \begin{array}{c} F1 \\ \hline 10015 \\ \hline 10015$

$$(x-2)(x^4+2x^3+4x^2+8x+16)$$

- **b)** $x^n a^n = (x a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + ... + a^{n-3}x^2 + a^{n-2}x + a^{n-1})$ where *n* is a positive integer.
- c) $(x-1)(x^5+x^4+x^3+x^2+x+1)$
- **d) i)** $(x-5)(x^2+25)$
 - ii) $(x-3)(x^4+3x^3+9x^2+27x+81)$

Yes, but only if *n* is odd.

F1+ F2+ F3 Tools Algebra Ca	i+ F4+ IcOtherPri	F5 F6+ 9m10C1ean UP
• factor(x'	⁴ + 16)	× ⁴ + 16
• factor(x ⁶	⁵ + 729)	
(× ² +	9) (×4	– 9·× ² + 81)
• factor(x ⁸	³ + 1)	× ⁸ + 1
factor(x^8	(+1)	
MAIN BÁ	DEXACT	FUNC 5/30

There is no pattern for $x^n + a^n$ when *n* is even.

F1+ F2+ F3+ F4+ F5 ToolsA19ebraCa1c[0ther]Pr3mI0[Clean Up]	F1+ F2+ F3+ F4+ F5 ToolsAl9ebraCalcOtherPr9miDClean UP
■factor(× ³ + 1)	• factor(× ⁵ + 32)
$(\times + 1) \cdot (\times^2 - \times + 1)$	$4 \times 4 - 2 \cdot \times 3 + 4 \cdot \times 2 - 8 \cdot \times + 16$
■ factor(× ⁵ + 32)	■ factor(x ⁵ + 3 ⁵)
$(x+2)\cdot(x^4-2\cdot x^3+4\cdot x^2-8)$	(×+3)·(× ⁴ - 3·× ³ + 9·× ² - ⊅
factor(x^5+32) Main Bablexact Func 10/30	factor(x^5+3^5) Main Bad Exact Func 11/30
F1 Tools A19ebra Calc Uther Pr9mil Clean UP	F1+ F2+ F3+ F4+ F5 ToolsAlgebra Calc Other Prymio Clean up
F1+, F2+, F3+, F4+, F5 Tools #19ebralCatclather Pr9millClean UP = factor(x ⁵ + 32)	F1+ F2+ F3+ F4+ F5 ToolsA13ebra(catc@thar/Pr3mi@ctean UP ■ factor(× ⁵ + 3 ⁵)
$ \begin{array}{c} \begin{array}{c} F_{1*} & F_{2*} & F_{3*} & F_{4*} & F_{5} \\ \hline F_{0015} & f_{35} & brac \\ \hline f_{0015} & f_{35} & brac \\ \hline f_{0015} & f_{35} & brac \\ \hline f_{0015} & f_{015} & brac \\ \hline f_{015} & f_{015} & f_{015} \\ \hline f_{0$	$\frac{\mathbf{F}_{1}^{1} \mathbf{F}_{2}^{2} \mathbf{F}_{3}^{2} \mathbf{F}_{1}^{1} \mathbf{F}_{1}^{\mathbf{F}_{2}} \mathbf{F}_{2}^{\mathbf{F}_{2}} \mathbf{F}_{2}^{\mathbf{F}_{2}$
$ \begin{array}{c} \begin{array}{c} F_{1}^{F_{1}}, F_{2}^{F_{2}}, F_{3}^{F_{3}}, F_{1}^{F_{1}}, F_{5}^{F_{5}}, F_{6}^{F_{6}}, \\ \hline \\ \bullet factor(x^{5} + 32) \\ \hline \\ & 4x^{4} - 2 \cdot x^{3} + 4 \cdot x^{2} - 8 \cdot x + 16) \\ \hline \\ \bullet factor(x^{5} + 3^{5}) \end{array} $	■ factor(\times^{5} + 3 ⁵) ■ factor(\times^{5} + 3 ⁵) ■ factor(\times^{3} + 9 $\cdot\times^{2}$ - 27 $\cdot\times$ + 81) ■ factor(\times^{3} + 8)
$ \begin{array}{c} \hline f_{4}^{1}, f_{2}^{2}, f_{3}^{2}, f_{4}^{1}, f_{5}^{1}, f_{4}^{1}, f_{5}^{1}, f_{6}^{1}, f$	Fit F2* F3* F4* F5 Tools All Sebro Concluster Promission up a factor ($\times^5 + 3^5$) 4 - 3 · $\times^3 + 9 \cdot \times^2 - 27 \cdot \times + 81$] a factor ($\times^3 + 8$) ($\times + 2$) · ($\times^2 - 2 \cdot \times + 4$]

Yes, but only if *n* is odd. Let n = 2k + 1. Then, $x^{2k+1} + a^{2k+1} = (x+a)(x^{2k} - x^{2k-1}a + x^{2k-2}a^2 - x^{2k-3}a^3 + \dots - xa^{2k-1} + a^{2k})$.

Chapter 2 Section 2

Question 22 Page 103

7x - 5

Polynomial Equations

Chapter 2 Section 3

Question 1 Page 110

- **a)** x = 0 or x = -2 or x = 5
- **b)** x = 1 or x = 4 or x = -3
- c) $x = -\frac{2}{3}$ or x = -9 or x = 2
- **d)** x = 7 or $x = -\frac{2}{3}$ or x = -1
- e) $x = \frac{1}{4}$ or $x = \frac{3}{2}$ or x = -8
- **f**) $x = \frac{5}{2}$ or $x = -\frac{5}{2}$ or x = 7
- **g)** $x = \frac{8}{5}$ or x = -3 or $x = \frac{1}{2}$

Chapter 2 Section 3

Question 2 Page 110

- **a)** x = -3 or x = -1 or x = 1
- **b)** x = -1 or x = 3 or x = 4
- c) x = -2 or x = -1 or x = 2 or x = 3
- **d)** x = -5 or x = -2 or x = 1
- e) x = -3 or x = -1 or x = 0 or x = 2

Question 3 Page 110

a) x = 4b) $(x-1)(x+1)(x^2+4) = 0$ x = 1 or x = -1c) $(3x^2+27)(x-4)(x+4) = 0$ x = 4 or x = -4d) $(x^2-1)(x^2+1)(x-5)(x+5) = 0$ $(x-1)(x+1)(x^2+1)(x-5)(x+5) = 0$ x = -1 or x = 1 or x = 5 or x = -5e) $(2x-3)(2x+3)(x^2+16) = 0$ $x = \frac{3}{2} \text{ or } x = -\frac{3}{2}$ f) (x+4)(x+3)(x-7)(x+7) = 0 x = 7 or x = -7 or x = -3 or x = -4g) $4(2x-1)(x+3)(x^2-25) = 0$

$$4(2x-1)(x+3)(x-5)(x+5) = 0$$

x = -3 or x = $\frac{1}{2}$ or x = 5 or x = -5

Chapter 2 Section 3

Chapter 2 Section 3

Question 4 Page 110

a) $y = x^3 - 4x^2 - 45x$ $0 = x(x^2 - 4x - 45)$ 0 = x(x - 9)(x + 5)x = 0 or x = 9 or x = -5

The *x*-intercepts are -5, 0, 9.

b)
$$f(x) = x^{2}(x^{2} - 81)$$

 $0 = x^{2}(x - 9)(x + 9)$
 $x = 0 \text{ or } x = 9 \text{ or } x = -9$

The *x*-intercepts are –9, 0, 9.

c)
$$P(x) = x(6x^2 - 5x - 4)$$

 $0 = x(3x - 4)(2x + 1)$
 $x = 0 \text{ or } x = \frac{4}{3} \text{ or } x = -\frac{1}{2}$

The x-intercepts are
$$-\frac{1}{2}$$
, 0, $\frac{4}{3}$.

d)
$$h(x) = x^{2}(x+1) - 4(x+1)$$

 $0 = (x^{2} - 4)(x+1)$
 $0 = (x-2)(x+2)(x+1)$
 $x = 2 \text{ or } x = -2 \text{ or } x = -1$

The *x*-intercepts are -2, -1, 2.

e)
$$g(x) = (x^2 - 4)(x^2 + 4)$$

 $0 = (x - 2)(x + 2)(x^2 + 4)$
 $x = 2 \text{ or } x = -2$

The *x*-intercepts are –2, 2.

f)
$$k(x) = x^{3}(x-2) - x(x-2)$$

 $0 = (x^{3} - x)(x-2)$
 $0 = x(x^{2} - 1)(x-2)$
 $0 = x(x-1)(x+1)(x-2)$
 $x = 0 \text{ or } x = 1 \text{ or } x = -1 \text{ or } x = 2$

The *x*-intercepts are -1, 0, 1, 2.

g) let
$$m = x^2$$

 $t(m) = m^2 - 29m + 100$
 $0 = (m - 25)(m - 4)$
substitute x back in for m
 $t(x) = (x^2 - 25)(x^2 - 4)$
 $0 = (x - 5)(x + 5)(x - 2)(x + 2)$
 $x = 5$ or $x = -5$ or $x = 2$ or $x = -2$

The *x*-intercepts are -5, -2, 2, 5.

Chapter 2 Section 3 Question 5 Page 111

Answers may vary. A sample solution is shown.

- a) False. If the graph of a quartic function has four *x*-intercepts, then the corresponding quartic equation has four real roots.
- b) True.
- c) False. A polynomial equation of degree 3 has three or fewer real roots.
- d) False. If a polynomial equation is not factorable, the roots can be determined by graphing.
- e) True.

Chapter 2 Section 3

Question 6 Page 111

a) By the integral zero theorem test factors of 18, that is, ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 .

F1- Tools A	F2+ 19ebra	(F3+) Calc	F4 + Other	í FS Pr9mi0	¥ F6 IC1ear	∐∳∐ Ì
New	Prob					Done
• 4 ₂ -	р(x)	=×3	- 4	_× 2.	- 3.5	× + 18
						Done
■ p(=	2)					0
Main		RAD E	XACT	FU	NC	3/30

Since x = -2 is a zero of P(x), (x + 2) is a factor.

Use division to determine the other factor.
2 | 1 -4 -3 18
- 2 -12 18
× | 1 -6 9 0

$$P(x) = x^{3} - 4x^{2} - 3x + 18$$

$$0 = (x+2)(x^{2} - 6x + 9)$$

$$0 = (x+2)(x-3)^{2}$$

$$x = -2 \text{ or } x = 3$$

b) By the integral zero theorem test factors of 10, that is, $\pm 1, \pm 2, \pm 5, \pm 10$.

F1+ F2+ Tools Algebr	aCalcOtherP	FS F6 r9ml0Clea	it UP
■ NewPro ■ 1 ∋ p(x)	b)=x ³ -4·	× ² - 7·	Done × + 10 Done
■ p(1) p(1) Main	PAD EVACT	FIINC	0

Since x = 1 is a zero of P(x), (x - 1) is a factor.

Use division to determine the other factor.

$$\begin{array}{c|cccc} -1 & 1 & -4 & -7 & 10 \\ \hline - & -1 & 3 & 10 \\ \hline \times & 1 & -3 & -10 & 0 \end{array}$$

$$P(x) = x^3 - 4x^2 - 7x + 10$$

$$0 = (x - 1)(x^2 - 3x - 10)$$

$$0 = (x - 1)(x - 5)(x + 2)$$

$$x = 5 \text{ or } x = -2 \text{ or } x = 1$$

c) By the integral zero theorem test factors of -3, that is, $\pm 1, \pm 3$.

F1+ F2+ Tools Algebra	F3+ F4+ CalcOther	F5 Pr9mI0C1e	76+ an Up
NewProb)		Done
• €he p(x) = x ³ - 3	5·x ² +	7·x - 3
			Done
■ p(1)			Θ
P(1)			
MAIN	RAD EXACT	FUNC	3/30

Since x = 1 is a zero of P(x), (x - 1) is a factor.

Use division to determine the other factor. $\begin{array}{c|c}
-1 & 1 & -5 & 7 & -3 \\
\hline
- & -1 & 4 & -3 \\
\hline
\times & 1 & -4 & 3 & 0
\end{array}$ $P(x) = x^3 - 5x^2 + 7x - 3 \\
0 = (x - 1)(x^2 - 4x + 3) \\
0 = (x - 1)(x - 3)(x - 1) \\
0 = (x - 1)^2(x - 3)$

$$x = 1 \text{ or } x = 3$$

d) By the integral zero theorem test factors of -12, that is, ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

■NewProb ■¶ine p(x)=x	Done 3 + x ² - 8·x - 12 Done
■ p(⁻ 2) p(-2)	0

Since x = -2 is a zero of P(x), (x + 2) is a factor.

Use division to determine the other factor.

$$\frac{2}{x} \begin{vmatrix} 1 & 1 & -8 & -12 \\ 2 & -2 & -12 \\ \hline x & 1 & -1 & -6 & 0 \end{vmatrix}$$

$$P(x) = x^3 + x^2 - 8x - 12$$

$$0 = (x+2)(x^2 - x - 6)$$

$$0 = (x+2)(x-3)(x+2)$$

$$0 = (x+2)^2(x-3)$$

$$x = -2 \text{ or } x = 3$$

e) By the integral zero theorem test factors of 12, that is, ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

F1+ F2+ Tools Algebr	aCalcOther	F5 F Pr9mI0C1e	67 3N UP
NewPro	Ь		Done
• • P(x)) =× ³ - 3	·× ² - 4	× + 12
			Done
■ p(12)			Θ
p(-2)			
MAIN	RAD EXACT	FUNC	3/30

Since x = -2 is a zero of P(x), (x + 2) is a factor.

Use division to determine the other factor. $2 \begin{vmatrix} 1 & -3 & -4 & 12 \\ - & 2 & -10 & 12 \\ \hline \times & 1 & -5 & 6 & 0 \\ P(x) = x^3 - 3x^2 - 4x + 12 \\ 0 = (x+2)(x^2 - 5x + 6) \\ 0 = (x+2)(x-2)(x-3) \\ x = -2 \text{ or } x = 2 \text{ or } x = 3 \\ \end{vmatrix}$ f) By the integral zero theorem test factors of 4, that is, ± 1 , ± 2 , ± 4 .

F1+) F2+ F3+) F4+	FS F6+
Too1sA19ebraCa1COtherF	r9ml0Clean UP
■NewProb	Done
■¶ne p(x)=x ³ +2	2 · x ² - 7 · x + 4
■ p(1)	Done 0
P(1) Main Bad Exact	FUNC 3/30

Since x = 1 is a zero of P(x), (x - 1) is a factor.

Use division to determine the other factor.

g) By the integral zero theorem test factors of 5, that is, ± 1 , ± 5 .

F1+ F Tools A19	2+ F3+ F4+ ebraCa1cOtherF	FS F6 r9ml0C1ear	n Up
NewPi	rob		Done
■ { fine	∍ p(x)=x ³	- 3·×² +	•×+5
			Done
■ p(~1))		0
p(-1)			
MAIN	RAD EXACT	FUNC	3/30

Since x = -1 is a zero of P(x), (x + 1) is a factor.

Use division to determine the other factor. 1 | 1 - 3 + 1 = 5

$$\begin{array}{c|c} - & 1 & -4 & 5 \\ \hline \times & 1 & -4 & 5 & 0 \end{array}$$

$$P(x) = x^3 - 3x^2 + x + 5$$

$$0 = (x+1)(x^2 - 4x + 5)$$

$$x = -1$$

Question 7 Page 111

a) Use the rational zero theorem to determine the values that should be tested. Let b represent the factors of the constant term -6, which are ±1, ±2, ±3, ±6. Let a represent the factors of the leading coefficient 2, which are ±1, ±2.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{6}{1}, \pm \frac{6}{2}$.

Test the values of $\frac{b}{a}$ for x to find the zeros.

F1+ F2+ F3+ F4+ F5 F1 Too1sA19ebraCa1cOtherPr9mIOC1ea	67 IN UP
■ NewProb ■	Done i·x − 6 Done
■ p(-1) p(-1) Main Rep F2act FUNC	0

Since x = -1 is a zero of P(x), (x + 1) is a factor.

Use division to determine the other factor.

$$\frac{1}{2} \begin{vmatrix} 2 & 3 & -5 & -6 \\ 2 & 1 & -6 \end{vmatrix}$$

$$P(x) = 2x^3 + 3x^2 - 5x - 6$$

$$0 = (x+1)(2x^2 + x - 6)$$

$$0 = (x+1)(2x-3)(x+2)$$

$$x = -2 \text{ or } x = -1 \text{ or } x = \frac{3}{2}$$

b) Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term 9, which are ±1, ±3, ±9. Let *a* represent the factors of the leading coefficient 2, which are ±1, ±2.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{9}{1}, \pm \frac{9}{2}$.

Since x = 3 is a zero of P(x), (x - 3) is a factor.

Since $x = -\frac{1}{2}$ is a zero of P(x), (2x + 1) is a factor. Using division we discover that the factor (x - 3) is of order 2. $P(x) = 2x^3 - 11x^2 + 12x + 9$ 0 = (x - 3)(2x + 1)(x - 3)

$$0 = (x-3)(2x+1)(x-3)^{2}$$
$$0 = (2x+1)(x-3)^{2}$$
$$x = -\frac{1}{2} \text{ or } x = 3$$

 c) Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term -8, which are ±1, ±2, ±4, ±8. Let *a* represent the factors of the leading coefficient 9, which are ±1, ±3, ±9.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}$, $\pm \frac{1}{3}$, $\pm \frac{1}{9}$, $\pm \frac{2}{1}$, $\pm \frac{2}{3}$, $\pm \frac{2}{9}$, $\pm \frac{4}{1}$, $\pm \frac{4}{3}$, $\pm \frac{4}{9}$, $\pm \frac{8}{1}$, $\pm \frac{8}{3}$, $\pm \frac{8}{9}$.

F1+ F2+ Tools Algebr	aCalcOtherPi	FS FI r9ml0C1ea	57 n Up
- 110001 1-0	0		DOHe
• 4 5(x) =	9·× ³ + 18	·× ² – 4	·×-8
			Done
■ p(-2)			6
■ p(= 2/3	5)		6
■ p(2/3)			6
p(2/3)			
MAIN	Red Evert	FUNC	5/30

Since x = -2 is a zero of P(x), (x + 2) is a factor.

Since $x = -\frac{2}{3}$ is a zero of P(x), (3x + 2) is a factor. Since $x = \frac{2}{3}$ is a zero of P(x), (3x - 2) is a factor.

$$0 = 9x^{3} + 18x^{2} - 4x - 8$$

$$0 = (x + 2)(3x + 2)(3x - 2)$$

$$0 = (x + 2)(3x + 2)(3x - 2)$$

$$x = -2 \text{ or } x = -\frac{2}{3} \text{ or } x = \frac{2}{3}$$

d) Use the rational zero theorem to determine the values that should be tested. Let b represent the factors of the constant term 18, which are ±1, ±2, ±3, ±6, ±9, ±18. Let a represent the factors of the leading coefficient 5, which are ±1, ±5.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}$, $\pm \frac{1}{5}$, $\pm \frac{2}{1}$, $\pm \frac{2}{5}$, $\pm \frac{3}{1}$, $\pm \frac{3}{5}$, $\pm \frac{6}{1}$, $\pm \frac{6}{5}$, $\pm \frac{9}{1}$, $\pm \frac{9}{5}$, $\pm \frac{18}{1}$, $\pm \frac{18}{5}$.

F1+ F2+ Tools Algebra	CalcOther	F5 r9mil(Cie	67 JN UP
	,	2	DOne
■ ¶(x) =5·	×9-8·>	< 4 - 27	×+18 Done
■ p(-2)			00116
■ p(3/5)			ē
■ p(3)			G
p(3)			
MAIN	RAD EXACT	FUNC	5/30

Since x = -2 is a zero of P(x), (x + 2) is a factor. Since $x = \frac{3}{5}$ is a zero of P(x), (5x - 3) is a factor. Since x = 3 is a zero of P(x), (x - 3) is a factor. $5x^3 - 8x^2 - 27x + 18 = (x + 2)(5x - 3)(x - 3)$ (x + 2)(5x - 3)(x - 3) = 0x = -2 or $x = \frac{3}{5}$ or x = 3

e)
$$8x^4 - 64x = 8x(x^3 - 8)$$

 $0 = 8x(x - 2)(x^2 + 2x + 4)$
 $x = 0 \text{ or } x = 2$

f) $4x^4 - 2x^3 - 16x^2 + 8x = 2x(2x^3 - x^2 - 8x + 4)$

Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term 4, which are $\pm 1, \pm 2, \pm 4$. Let *a* represent the factors of the leading coefficient 2, which are $\pm 1, \pm 2$.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}$, $\pm \frac{1}{2}$, $\pm \frac{2}{1}$, $\pm \frac{2}{2}$, $\pm \frac{4}{1}$, $\pm \frac{4}{2}$.

F1+ F2+ Tools Algebro	F3+ F4+ Ca1cOther	F5 Pr9mi0(C	F6+ 1ean UP	\cap
	, 	2	_ 0. v	ле ти
- the p(x)-2.X	_	D	one
■ p(-2)				- 0
■ p(1/2)				Θ
P(2)				- 6
P(2)				
MAIN	RAD EXACT	FUNC	: 5	230

Since x = -2 is a zero of P(x), (x + 2) is a factor. Since $x = \frac{1}{2}$ is a zero of P(x), (2x - 1) is a factor. Since x = 2 is a zero of P(x), (x - 2) is a factor. $4x^4 - 2x^3 - 16x^2 + 8x = 2x(x + 2)(2x - 1)(x - 2)$ 2x(x + 2)(2x - 1)(x - 2) = 0x = -2 or x = 0 or $x = \frac{1}{2}$ or x = 2

g) By the integral zero theorem test factors of 18, that is, ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 .

F1+ F2+ Tools Algebri	aCalcOther	FS FI Pr9mIDC1ea	i+ n Up
■<)=×=-	·×3 - 11	•×++9•	× + 18
			Done
■ p(13)			Θ
■ p(~1)			0
P(2)			0
■ p(3)			Θ
p(3)			
MAIN	RAD EXACT	FUNC	6/30

Since x = -3 is a zero of P(x), (x + 3) is a factor. Since x = -1 is a zero of P(x), (x + 1) is a factor. Since x = 2 is a zero of P(x), (x - 2) is a factor. Since x = 3 is a zero of P(x), (x - 3) is a factor. $x^4 - x^3 - 11x^2 + 9x + 18 = (x + 3)(x + 1)(x - 2)(x - 3)$ (x + 3)(x + 1)(x - 2)(x - 3) = 0x = -3 or x = -1 or x = 2 or x = 3

a) By the integral zero theorem test factors of 8, that is, ± 1 , ± 2 , ± 4 , ± 8 .

F1- T0015 A1	F2 - 9ebra	<u>F37</u>	F4+ Other	F5 Pr9mi0	F6+ Clean Up	П
- 1100	100		र	_ 2	- 0	one
■ ¶he	P(X))=>	·• -	5∙x≁	+2·x	+ 8 0ne
■ p(-)	D				0.	0110
■ P(2)						0
P(4)						0
p(4)		Pen	FVACT	FUN	10 N	220

Since x = -1 is a zero of P(x), (x + 1) is a factor. Since x = 2 is a zero of P(x), (x - 2) is a factor. Since x = 4 is a zero of P(x), (x - 4) is a factor. $x^3 - 5x^2 + 2x + 8 = (x + 1)(x - 2)(x - 4)$ (x + 1)(x - 2)(x - 4) = 0x = -1 or x = 2 or x = 4

b) By the integral zero theorem test factors of -6, that is, $\pm 1, \pm 2, \pm 3, \pm 6$.

F1+ F2+	raCalcOtherP	FS F6	
Tools Algeb		r9ml0(Clear	∎₽
■NewPro	ob	- × ² - 4	Done
■¶fine	P(x) =x ³ -		·× - 6
■ p(3)			Done 0
PC32	RAD EXACT	FUNC	3/30

Divide to determine the other factor.

$$x^{3} - x^{2} - 4x - 6 = (x - 3)(x^{2} + 2x + 2)$$
$$(x - 3)(x^{2} + 2x + 2) = 0$$
$$x = 3$$

c) Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term -5, which are ±1, ±5. Let *a* represent the factors of the leading coefficient 2, which are ±1, ±2.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}$, $\pm \frac{1}{2}$, $\pm \frac{5}{1}$, $\pm \frac{5}{2}$.

F1+ F2+ ToolsAlgebro	F3+ F4+ Ca1c0ther	FS F6 Pr9ml0Clea	n Up
			_
NewProb	°	_	Done
■ 4 >(x) =2	2·× ³ - 7	•x ² + 10	·× - 5
			Done
■ p(1)			Θ
P(1)			
MAIN	RAD EXACT	FUNC	3/30

Divide to determine the other factors.

	2	:× ² - 5	i•x + 5
• propFra	લ—–	× -	1 ^
	(2·× ³	- 7·× ²	+ 10 🝗
P(1)			6
1 1 9 -			Done
Tools A1960ra	Caic Other P	ramil Clea	n Up

$$2x^{3} - 7x^{2} + 10x - 5 = (x - 1)(2x^{2} - 5x + 5)$$
$$(x - 1)(2x^{2} - 5x + 5) = 0$$
$$x = 1$$

d) By the integral zero theorem test factors of -4, that is, $\pm 1, \pm 2, \pm 4$.

$$P(-1) = (-1)^{4} - (-1)^{3} - 2(-1) - 4$$

= 1 + 1 + 2 - 4
= 0
Since x = -1 is a zero of P(x), (x + 1) is a factor.

Divide to determine the other factors.

$$\frac{1}{-1} \begin{vmatrix} 1 & -1 & 0 & -2 & -4 \\ - & 1 & -2 & 2 & -4 \\ \hline x & 1 & -2 & 2 & -4 & 0 \end{vmatrix}$$

$$x^{4} - x^{3} - 2x - 4 = (x + 1)(x^{3} - 2x^{2} + 2x - 4)$$

$$P(2) = (2)^{3} - 2(2)^{2} + 2(2) - 4$$

$$= 8 - 8 + 4 - 4$$

$$= 0$$
Since $x = 2$ is a zero of $P(x)$, $(x - 2)$ is a factor.
Divide to determine the other factors.

$$-2|1 - 2 & 2 - 4$$

$$\frac{-}{-2} & 0 - 4$$

$$\frac{-}{-2$$

e) $x^4 + 13x^2 + 36 = 0$ $x^4 + 13x^2 = -36$ $x^4 + 13x^2$ cannot be negative. $x^4 + 13x^2 + 36 = 0$ has no real roots since there are no real values of x that satisfy the equation.

a) Set the mode to approximate.

$$x \doteq -1.3$$

$$x \doteq -1.4 \text{ or } x \doteq 1.9$$

There are no real roots.

Let x be the height of the tank. width = x - 3 $V(x) = w^2 \times h$ (square based) $20 = (x - 3)^2 x$ $0 = (x^2 - 6x + 9) - 20$ $0 = x^3 - 6x^2 + 9x - 20$

By the integral zero theorem test factors of 20, that is, ± 1 , ± 2 , ± 4 , ± 5 , ± 20 .

 $V(5) = (5)^{3} - 6(5)^{2} + 9(5) - 20$ = 125 - 150 + 45 - 20 = 0 Since x = 5 is a zero of P(x), (x - 5) is a factor.

Divide to determine the other factors.

$$\begin{array}{r|l} -5 & 1 & -6 & 9 & -20 \\ \hline - & -5 & 5 & -20 \\ \hline \times & 1 & -1 & 4 & 0 \end{array}$$

$$V(x) = (x-5)(x^2 - x + 4) \\ 0 = & (x-5)(x^2 - x + 4) \\ x = x^2 - x + 4 \text{ or } x = 5 \end{array}$$

$$x = \frac{1 \pm \sqrt{1^2 - 4(1)(4)}}{2(1)} \\ x = \frac{1 \pm \sqrt{-15}}{2}$$

Since the only positive root is x = 5, the height of the tank is 5 m. width = 2

The dimensions of the tank are 2 m by 2 m by 5 m.

Question 11 Page 111

$$V(x) = (2x - 7)(2x + 3)(x - 2)$$

117 = 4x³ - 16x² - 5x + 42
0 = 4x³ - 16x² - 5x - 75

Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term -75, which are $\pm 1, \pm 3, \pm 5, \pm 15, \pm 25, \pm 75$.

Let *a* represent the factors of the leading coefficient 4, which are $\pm 1, \pm 2, \pm 4$.

The possible values of
$$\frac{b}{a}$$
 are
 $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{5}{1}, \pm \frac{5}{2}, \pm \frac{5}{4}, \pm \frac{15}{1}, \pm \frac{15}{2}, \pm \frac{15}{4}, \pm \frac{15}{1}, \pm \frac{15}{2}, \pm \frac{15}{4}, \pm \frac{25}{1}, \pm \frac{25}{2}, \pm \frac{25}{4}, \pm \frac{75}{1}, \pm \frac{75}{2}, \pm \frac{75}{4}.$

$$\frac{15}{100}, \pm \frac{15}{4}, \pm \frac{25}{1}, \pm \frac{25}{2}, \pm \frac{25}{4}, \pm \frac{75}{1}, \pm \frac{75}{2}, \pm \frac{75}{4}.$$

Feature Prob

NewProb

NewProb

NewProb

Done

4(x) = 4 \cdot x^{3} - 16 \cdot x^{2} - 5 \cdot x - 75

Done

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9.

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9(5)

9

Since x = 5 is a zero of V(x), (x - 5) is a factor.

Question 12 Page 111

Answers may vary. A sample solution is shown. Yes, for example: $x^3 + 2 = 0$

$$x^{3} = -2$$
$$x = \sqrt[3]{-2}$$
$$x \doteq -1.26$$

Chapter 2 Section 3

Question 13 Page 111

Answers may vary. A sample solution is shown.

No. If the radical part of the quadratic is negative, then two non-real roots occur. Example:

$$x^{3} - x^{2} + 5x - 5 = 0$$

$$x^{2}(x - 1) + 5(x - 1) = 0$$

$$(x^{2} + 5)(x - 1) = 0$$

$$x^{2} = -5 \text{ or } x = 1$$

$$x = \pm \sqrt{-5} \text{ or } x = 1$$

Question 14 Page 111

 $-4t^{3} + 40t^{2} + 500t = 4088$ $-4t^{3} + 40t^{2} + 500t - 4088 = 0$ $-4(t^{3} - 10t^{2} - 125t + 1022) = 0$

By the integral zero theorem test factors of 1022, that is, ± 1 , ± 2 , ± 7 , ± 146 , ± 511 , ± 1022 .

F1+ F2+ ToolsA19ebra	(F3+) F4+ CalcOther F	F5 F 179m10(C1e4	i6+ an Up
■ NewProb)		Done
• • • = t ³ -	10·t ² -	125·t	+ 1022 Done
■ p(7)			Θ.
P(7) MAIN	RAD APPROX	FUNC	3/30

Since t = 7 is a zero of P(t), (t - 7) is a factor.

Use division to find any other factors. -7 | 1 -10 -125 1022 - -7 21 1022 × | 1 -3 -146 0 0 = -4(t^3 - 10t^2 - 125t + 1022) 0 = -4(t - 7)(t^2 - 3t - 146) t = 7 or t = $\frac{3 \pm \sqrt{(-3)^2 - 4(1)(-146)}}{2}$ t = $\frac{3 \pm \sqrt{593}}{2}$ t = 13.7 or t = -10.7

Since time cannot be negative and $0 \le t \le 10$, t = 7 h. It takes the plane 7 hours to fly 4088 km.

Question 15 Page 111

$$d(x) = 0.0005(x^{4} - 16x^{3} + 512x)$$

$$0 = 0.0005x(x^{3} - 16x^{2} + 512)$$

Let $P(x) = x^{3} - 16x^{2} + 512$
 $P(8) = (8)^{3} - 16(8)^{2} + 512$
 $= 512 - 1024 + 512$
 $= 0$
Since $x = 8$ is a zero of $P(x)$ ($x = 8$) is a f

Since x = 8 is a zero of P(x), (x - 8) is a factor.

The weight should be placed 0 m or 8 m or approximately 12.9 m from the end.

Question 16 Page 112

Domain: The price, x, of sunscreen cannot be negative and the number, D, of bottles sold cannot be negative. The domain is approximately $\{x \in \mathbb{R}, 0 \le x \le 9.923\}$.

22 000 bottles per month are sold when the price is \$5 per bottle.

c) On your graph, sketch the line y = 172 and find the points of intersection.

x = 3 or x = 8; If the selling price is \$3 per bottle or \$8 per bottle, then 17 200 bottles of sunscreen will be sold per month.

Question 17 Page 112

a)

$$2(x-1)^{3} = 16$$

$$(x^{2}-2x+1)(x-1) = 8$$
Divide both sides by 2.

$$x^{3}-x^{2}-2x^{2}+2x+x-1 = 8$$
Expand.

$$x^{3}-3x^{2}+3x-9 = 0$$
Collect like terms.

$$x^{2}(x-3)+3(x-3) = 0$$
Factor by grouping.

$$(x^{2}+3)(x-3) = 0$$

$$x = 3$$

Equation could also be solved by factoring difference of cubes.

$$2(x-1)^{3} = 16$$

$$(x-1)^{3} - 8 = 0$$
Divide both sides by 2.
$$\left[(x-1)^{2} - 2 \right] \left[(x-1)^{2} + 2(x-1) + 4 \right] = 0$$
Factor the difference of cubes.
$$(x-3)(x^{2} - 2x + 1 + 2x - 2 + 4) = 0$$
Expand and add like terms.
$$(x-3)(x^{2} + 3) = 0$$

$$x = 3$$

b)
$$2(x^{2}-4x)^{2}-5(x^{2}-4x)=3$$
$$2(x^{2}-4x)^{2}-5(x^{2}-4x)-3=0$$
Let $m = x^{2}-4x$.
$$2m^{2}-5m-3=0$$
$$(m-3)(2m+1)=0$$
$$m=3 \text{ or } m = -\frac{1}{2}$$

Substitute $x^2 - 4x$ back in for *m*.

$$x^{2} - 4x = 3 \quad \text{or} \qquad x^{2} - 4x = -\frac{1}{2} \qquad \text{Multiply by 2.}$$

$$x^{2} - 4x - 3 = 0 \qquad 2x^{2} - 8x + 1 = 0$$

$$x = \frac{4 \pm \sqrt{(-4)^{2} - 4(1)(-3)}}{2(1)} \qquad x = \frac{8 \pm \sqrt{(-8)^{2} - 4(2)(1)}}{2(2)}$$

$$x = \frac{4 \pm \sqrt{28}}{2} \qquad x = \frac{8 \pm \sqrt{56}}{4}$$

$$x \doteq 4.6 \text{ or } x \doteq -0.6 \text{ or } x \doteq 3.9 \text{ or } x \doteq 0.1$$

Question 18 Page 112

a)

$$2x^{3} + (k+1)x^{2} = 4 - x^{2}$$

$$2x^{3} + (k+1)x^{2} - 4 + x^{2} = 0$$

$$2(-2)^{3} + (k+1)(-2)^{2} - 4 + (-2)^{2} = 0$$

$$-16 + 4k + 4 - 4 + 4 = 0$$

$$4k = 12$$

$$k = 3$$

b)
$$2x^{3} + (k+1)x^{2} - 4 + x^{2} = 0$$

 $2x^{3} + (3+1)x^{2} - 4 + x^{2} = 0$
 $2x^{3} + 5x^{2} - 4 = 0$

Since -2 is a root of the equation, (x + 2) is a factor. Divide to determine the other factors.

$$\frac{2x^{2} + x - 2}{x + 2}$$

$$x + 2)2x^{3} + 5x^{2} + 0x - 4$$

$$\frac{2x^{3} + 4x^{2}}{x^{2} + 0x}$$

$$\frac{x^{2} + 2x}{-2x - 4}$$

$$-2x - 4$$

$$\frac{-2x - 4}{0}$$

$$(x + 2)(2x^{2} + x - 2) = 0$$

$$x = -2$$
or
$$x = \frac{-1 \pm \sqrt{(1)^{2} - 4(2)(-2)}}{2(2)}$$

$$x = \frac{-1 \pm \sqrt{17}}{4}$$

$$x \doteq 2 \text{ or } x \doteq -1.3 \text{ or } x \doteq 0.8$$

Question 19 Page 112

length =
$$(32 - 2x)$$

width = $(28 - 2x)$
height = x
 $V(x) = (32 - 2x)(28 - 2x)x$
 $1920 = 4x^3 - 120x^2 + 896x$
 $0 = 4x^3 - 120x^2 + 896x - 1920$
 $0 = 4(x^3 - 30x^2 + 224x - 480)$

 $V(4) = (4)^{3} - 30(4)^{2} + 224(4) - 480$ = 64 - 480 + 896 - 480 = 0 Since x = 4 is a zero of V(x), (x - 4) is a factor.

Divide to determine the other factors.

$ \begin{array}{c cccc} -4 & 1 & -30 \\ - & -4 \\ \hline \times & 1 & -26 \end{array} $	224 -480 104 -480 120 0	
$(x-4)(x^2-2)(x-4)(x-6)(x-6)(x-6)(x-6)(x-6)(x-6)(x-6)(x-6$	6x + 120) = 0 6)(x - 20) = 0	
If $x = 4$ length = 24 width = 20 height = 4	If $x = 6$ length = 20 width = 16 height = 6	If $x = 20$ length = -8 ; cannot have negative length

The dimensions of the boxes are 24 cm by 20 cm by 4 cm or 20 cm by 16 cm by 6 cm.

Question 20 Page 112

a)
$$(x-3)(x^2+3x+9) = 0$$

 $x = 3$
or
 $x = \frac{-3 \pm \sqrt{(3)^2 - 4(1)(9)}}{2(1)}$
 $x = \frac{-3 \pm \sqrt{-27}}{2}$
 $x = \frac{-3 \pm \sqrt{-1} \times \sqrt{3} \times \sqrt{9}}{2}$
 $x = \frac{-3 \pm \sqrt{-1} \times \sqrt{3} \times \sqrt{9}}{2}$
 $x = \frac{-3 \pm 3i\sqrt{3}}{2}$
 $x = \frac{-3 \pm 3i\sqrt{3}}{2}$ or $x = \frac{-3 - 3i\sqrt{3}}{2}$
 $x = 3$ or $x = \frac{-3 + 3i\sqrt{3}}{2}$ or $x = \frac{-3 - 3i\sqrt{3}}{2}$
b) $0 = [x - (3 + i)][x - (3 - i)](x + 4)$
 $= [x^2 - (3 - i)x - (3 + i)x + (3 - i)(3 + i)](x + 4)$
 $= [x^2 - 6x + 9 - (-1)](x + 4)$
 $= [x^2 - 6x + 9 - (-1)](x + 4)$
 $= (x^2 - 6x + 10)(x + 4)$
 $= x^3 + 4x^2 - 6x^2 - 24x + 10x + 40$
 $= x^3 - 2x^2 - 14x + 40$

This equation is not unique since any multiple of it would have the same roots (e.g., $2x^3 - 4x^2 - 28x + 80 = 0$).

$$V(x) = x(x+1)(x+2)$$

$$(x+1)(x+1+2)(x+2+3) = x(x+1)(x+2) + 456$$

$$(x+1)(x+3)(x+5) = x(x^{2}+3x+2) + 456$$

$$(x^{2}+4x+3)(x+5) = x^{3}+3x^{2}+2x+456$$

$$x^{3}+5x^{2}+4x^{2}+20x+3x+15 = x^{3}+3x^{2}+2x+456$$

$$x^{3}-x^{3}+9x^{2}-3x^{2}+23x-2x+15-456 = 0$$

$$6x^{2}+21x-441 = 0$$

$$3(2x^{2}+7x-147) = 0$$

$$3(2x^{2}+7x-147) = 0$$

$$3(2x+21)(x-7) = 0$$

$$x = \sqrt{21} \text{ or } x = 7$$
Reject the negative root.
smaller box
height = x = 7
width = x + 1 = 8
width = x + 3 = 10
length = x + 2 = 9
length = x + 5 = 12

The dimensions of the smaller box are 9 cm by 8 cm by 7 cm. The dimensions of the larger box are 12 cm by 10 cm by 8 cm.
Question 22 Page 112

Use the rational zero theorem to determine the values that should be tested. Let *b* represent the factors of the constant term -6, which are $\pm 1, \pm 2, \pm 3, \pm 6$. Let *a* represent the factors of the leading coefficient 6, which are $\pm 1, \pm 2, \pm 3, \pm 6$.

The possible values of $\frac{b}{a}$ are $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{2}{3}, \pm \frac{2}{6}, \pm \frac{3}{1}, \pm \frac{3}{2}, \pm \frac{3}{3}, \pm \frac{6}{1}, \pm \frac{6}{2}, \pm \frac{6}{3}, \pm \frac{6}{6}.$

Done • p(-3) 0. • p(-1/2) 0. • p(2/3) 1. e - 13 p(2/3) MAIN RAD EXACT FUNC 5/30

Since x = -3 is a zero of V(x), (x + 3) is a factor. Since $x = -\frac{1}{2}$ is a zero of V(x), (2x + 1) is a factor. Since $x = \frac{2}{3}$ is a zero of V(x), (3x - 2) is a factor.

$$a = -3; b = -\frac{1}{2}; c = \frac{2}{3}$$

$$a + b = -3 + \left(-\frac{1}{2}\right) = -\frac{7}{2}; (2x + 7) \text{ is a factor.}$$

$$\frac{a}{b} = \frac{-3}{-\frac{1}{2}} = 6; (x - 6) \text{ is a factor.}$$

$$ab = -3\left(-\frac{1}{2}\right) = \frac{3}{2}; (2x - 3) \text{ is a factor.}$$

$$0 = (2x + 7)(x - 6)(2x - 3)$$

$$= (2x^{2} - 5x - 42)(2x - 3)$$

$$= 4x^{3} - 6x^{2} - 10x^{2} + 15x - 84x + 126$$

$$= 4x^{3} - 16x^{2} - 69x + 126$$

or

$$= x^{3} - 4x^{2} - \frac{69}{4}x + \frac{63}{2}$$

Question 23 Page 112

The diameter of a circle subtends a right triangle to any point on a circle. Therefore, $\angle APB = \angle CPB = 90^{\circ}$. From $\triangle POB$: 45 + x + 2y = 180 x + 2y = 135 ① From $\triangle POC$: y + 90 + 2x = 1802x + y = 90 ②

Solve for x. (1) -2(2) x + 2y - (4x + 2y) = 135 - 180 -3x = -45 x = 15 $\angle POC = 15^{\circ}$

Chapter 2 Section 3

Question 24 Page 112

Try different values of *k*.

Through trial and error when k = 5 the equation has a double root. $2x^3 - 9x^2 + 12x - 5 = 0$ $(x - 1)^2(2x - 5) = 0$ When k = 4 the equation has a double root.

 $2x^{3} - 9x^{2} + 12x - 4$ (x - 2)²(2x - 1) = 0 When k = 5 the equation has a double root.

k = 4 and k = 5The product is 20.

Families of Polynomial Functions

Chapter 2 Section 4

Question 1 Page 119

- a) The factor associated with -7 is (x + 7) and the factor associated with -3 is (x + 3). An equation for this family is y = k(x + 7)(x + 3), where $k \in \mathbb{R}$, $k \neq 0$.
- b) Answers may vary. A sample solution is shown. y = 2(x + 7)(x + 3), y = -3(x + 7)(x + 3)
- c) Substitute x = 2 and y = 18 into the equation. 18 = k(2+7)(2+3)

$$18 = 45k$$

$$k = \frac{18}{45}$$

$$k = \frac{2}{5}$$

$$y = \frac{2}{5}(x+7)(x+3)$$

Chapter 2 Section 4

Question 2 Page 119

C (has different zeros)

Chapter 2 Section 4

Question 3 Page 119

A, B, and D (same zeros)

A, C, E (zeros are -3, -2, 1) B, D, F(zeros are -1, 2, 3)

Question 5 Page 120

a) y = k(x+5)(x-2)(x-3)b) y = k(x-1)(x-6)(x+3)c) y = k(x+4)(x+1)(x-9)d) y = kx(x+7)(x-2)(x-5)

Chapter 2 Section 4

Question 6 Page 120

a) A From the graph, the x-intercepts are -2, 1, and 3. The corresponding factors are (x + 2), (x - 1), and (x - 3). An equation for the family of polynomial functions with these zeros is y = k(x + 2)(x - 1)(x - 3). Select a point that the graph passes through, such as (0, 6). Substitute x = 0 and y = 6 into the equation to solve for k. 6 = (2)(-1)(-3)kk = 1An equation is y = (x + 2)(x - 1)(x - 3).

B From the graph, the *x*-intercepts are -2, 1, and 3. The corresponding factors are (x + 2), (x - 1), and (x - 3). An equation for the family of polynomial functions with these zeros is y = k(x + 2)(x - 1)(x - 3). Select a point that the graph passes through, such as (0, -3). Substitute x = 0 and y = -3 into the equation to solve for k. -3 = (2)(-1)(-3)k6k = -3 $k = -\frac{1}{2}$ An equation is $y = -\frac{1}{2}(x + 2)(x - 1)(x - 3)$.

C From the graph, the *x*-intercepts are -2, 2, and 3. The corresponding factors are (x + 2), (x - 2), and (x - 3). An equation for the family of polynomial functions with these zeros is y = k(x + 2)(x - 2)(x - 3). Select a point that the graph passes through, such as (0, -6). Substitute x = 0 and y = -6 into the equation to solve for k. -6 = (2)(-2)(-3)k12k = -6 $k = -\frac{1}{2}$ An equation is $y = -\frac{1}{2}(x + 2)(x - 2)(x - 3)$. D From the graph, the x-intercepts are -2, 1, and 3. The corresponding factors are (x + 2), (x - 1), and (x - 3). An equation for the family of polynomial functions with these zeros is y = k(x + 2)(x - 1)(x - 3). Select a point that the graph passes through, such as (0, 12). Substitute x = 0 and y = 12 into the equation to solve for k. 12 = (2)(-1)(-3)kk = 2An equation is y = 2(x + 2)(x - 1)(x - 3).

Chapter 2 Section 4

Question 7 Page 120

- a) The corresponding factors are (x + 4), (x 2), and x. An equation for the family of polynomial functions with these zeros is y = kx(x + 4)(x - 2)
- b) Answers may vary. A sample solution is shown. y = x(x + 4)(x - 2), y = -2x(x + 4)(x - 2)
- c) Substitute x = -2 and y = 4 into the equation and solve for k. 4 = k(-2)(-2 + 4)(-2 - 2) 4 = 16k $k = \frac{1}{4}$ An equation is $y = \frac{1}{4}x(x + 4)(x - 2)$.
- d) Answers may vary. A sample solution is shown.

Question 8 Page 120

- a) y = k(x+2)(x+1)(2x-1)
- **b)** Answers may vary. A sample solution is shown.

$$y = -(x + 2)(x + 1)(2x - 1), y = \frac{1}{2}(x + 2)(x + 1)(2x - 1)$$

- c) Substitute x = 0 and y = 6 and solve for k. 6 = k(2)(1)(-1) k = -3An equation is y = -3(x + 2)(x + 1)(2x - 1).
- d) Answers may vary. A sample solution is shown.

Question 9 Page 120

- a) y = k(x+4)(x+1)(x-2)(x-3)
- b) Answers may vary. A sample solution is shown. y = 2(x+4)(x+1)(x-2)(x-3), y = -3(x+4)(x+1)(x-2)(x-3)
- c) Substitute x = 0 and y = -4 and solve for k. -4 = k(4)(1)(-2)(-3) 24k = -4 $k = -\frac{1}{6}$ An equation is $y = -\frac{1}{6}(x+4)(x+1)(x-2)(x-3)$.
- d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

Question 10 Page 120

- a) y = k(2x+5)(x+1)(2x-7)(x-3)
- b) Answers may vary. A sample solution is shown.

$$y = -\frac{1}{2}(2x+5)(x+1)(2x-7)(x-3)$$

$$y = 2(2x+5)(x+1)(2x-7)(x-3)$$

c) Substitute x = -2 and y = 25 and solve for k. 25 = k[2(-2) + 5](-2 + 1)[2(-2) - 7](-2 - 3)25 = k(1)(-1)(-11)(-5)25 = -55k $k = -\frac{5}{11}$

An equation is
$$y = -\frac{5}{11}(2x+5)(x+1)(2x-7)(x-3)$$
.

d) Answers may vary. A sample solution is shown.

36.81818

Y=

X=2

Y=162

Question 11 Page 120

a) The factors are
$$(x - 1 + \sqrt{2}), (x - 1 - \sqrt{2})$$
 and $(2x + 1)$.
 $y = k(x - 1 + \sqrt{2})(x - 1 - \sqrt{2})(2x + 1)$
 $= k(x^2 - x - \sqrt{2}x - x + 1 + \sqrt{2} + \sqrt{2}x - \sqrt{2} - 2)(2x + 1)$
 $= k(x^2 - 2x - 1)(2x + 1)$
 $= k(2x^3 + x^2 - 4x^2 - 2x - 2x - 1)$
 $= k(2x^3 - 3x^2 - 4x - 1)$

b) Substitute x = 3 and y = 35 and solve for *k*.

$$35 = k \lfloor 2(3)^3 - 3(3)^2 - 4(3) - 1 \rfloor$$

$$35 = k(54 - 27 - 12 - 1)$$

$$35 = 14k$$

$$k = \frac{5}{2}$$

An equation is $y = \frac{5}{2}(2x^3 - 3x^2 - 4x - 1).$

Chapter 2 Section 4

Question 12 Page 120

a)
$$y = k(x-3)^2(x+4+\sqrt{3})(x+4-\sqrt{3})$$

 $= k(x^2-6x+9)(x^2+4x-\sqrt{3}x+4x+16-4\sqrt{3}+\sqrt{3}x+4\sqrt{3}-3)$
 $= k(x^2-6x+9)(x^2+8x+13)$
 $= k(x^4+8x^3+13x^2-6x^3-48x^2-78x+9x^2+72x+117)$
 $= k(x^4+2x^3-26x^2-6x+117)$

b) Substitute x = 1 and y = -22 and solve for k. $-22 = k \left[1^4 + 2(1)^3 - 26(1)^2 - 6(1) + 117 \right]$

$$-22 = k(88)$$

$$k = -\frac{1}{4}$$

An equation is $y = -\frac{1}{4}(x^4 + 2x^3 - 26x^2 - 6x + 117).$

MHR • Advanced Functions 12 Solutions 166

Question 13 Page 120

a)
$$y = k(x+1-\sqrt{5})(x+1+\sqrt{5})(x-2+\sqrt{2})(x-2-\sqrt{2})$$

 $= k(x^{2}+x+\sqrt{5}x+x+1+\sqrt{5}-\sqrt{5}x-\sqrt{5}-5)\times$
 $(x^{2}-2x-\sqrt{2}x-2x+4+2\sqrt{2}+\sqrt{2}x-2\sqrt{2}-2)$
 $= k(x^{2}+2x-4)(x^{2}-4x+2)$
 $= k(x^{4}-4x^{3}+2x^{2}+2x^{3}-8x^{2}+4x-4x^{2}+16x-8)$
 $= k(x^{4}-2x^{3}-10x^{2}+20x-8)$

b) Substitute x = 0 and y = -32 and solve for k. -32 = k(-8) k = 4An equation is $y = 4(x^4 - 2x^3 - 10x^2 + 20x - 8)$.

Chapter 2 Section 4

Question 14 Page 120

From the graph, the *x*-intercepts are -2, 1, and 3. The corresponding factors are (x + 2), (x - 1), and (x - 3). An equation for the family of polynomial functions with these zeros is y = k(x + 2)(x - 1)(x - 3). The *y*-intercept is -12. Substitute x = 0 and y = -12 and solve for *k*. -12 = k(2)(-1)(-3)k = -2An equation is y = -2(x + 2)(x - 1)(x - 3).

Question 15 Page 121

From the graph, the x-intercepts are -3 (order 2), 1, and $\frac{3}{2}$.

The corresponding factors are $(x + 3)^2$, (x - 1), and (2x - 3). An equation for the family of polynomial functions with these zeros is $y = k(x + 3)^2(x - 1)(2x - 3)$. The *y*-intercept is 27. Substitute x = 0 and y = 27 and solve for *k*. $27 = k(3)^2(-1)(-3)$ 27 = 27kk = 1An equation is $y = (x + 3)^2(x - 1)(2x - 3)$.

Chapter 2 Section 4

k = -2

An equation is y = -2x(2x + 7)(x + 2)(x - 1).

Question 16 Page 121

From the graph, the *x*-intercepts are $-\frac{7}{2}$, -2, 0, and 1. The corresponding factors are *x*, (2x + 7), (x + 2), and (x - 1).An equation for the family of polynomial functions with these zeros is y = kx(2x + 7)(x + 2)(x - 1).The graph passes through $\left(-\frac{3}{2}, -15\right).$ Substitute $x = -\frac{3}{2}$ and y = -15 and solve for *k*. $-15 = k\left(-\frac{3}{2}\right)\left[2\left(-\frac{3}{2}\right) + 7\right]\left(-\frac{3}{2} + 2\right)\left(-\frac{3}{2} - 1\right)$ $-15 = k\left(-\frac{3}{2}\right)(4)\left(\frac{1}{2}\right)\left(-\frac{5}{2}\right)$ $-15 = \frac{15}{2}k$

Set A: no; the zeros are different y = (3x+1)(2x-1)(x+3)(x-2)

y = 2(3x+1)(2x-1)(x+3)(x-2) + 1

 $y = 3(3x+1)(2x-1)(x+3)(x-2) + 2 \quad y = 4(3x+1)(2x-1)(x+3)(x-2) + 3$

Question 18 Page 121

Don

Chapter 2 Section 4

a) height = xwidth = 30 - xlength = 48 - 2x

V(x) = x(48 - 2x)(30 - x)

 $x(1440 - 48x - 60x + 2x^{2}) = 2300$ $2x^{3} - 108x^{2} + 1440x - 2300 = 0$ $2(x^{3} - 54x^{2} + 720x - 1150) = 0$

x(48-2x)(30-x) = 2300

Using the integral zero theorem test the values ± 1 , ± 2 , ± 5 , ± 10 , ± 23 , ± 25 , ± 46 , ± 50 , ± 115 , ± 230 , ± 575 , ± 1150 . These values do not work.

Factor using CAS on approximate mode.


```
2(x-33.5765)(x-18.5801)(x-1.84337) = 0
x = 33.6 or x = 18.6 or x = 1.84
```

height = 33.6width = -3.6length = -19.2Disregard the negative dimensions.

height \doteq 18.6	height \doteq 1.84
width \doteq 11.4	width \doteq 28.16
length $\doteq 10.8$	length \doteq 44.31

The possible dimensions of the box are approximately 44.31 cm by 28.16 cm by 1.84 cm or 18.6 cm by 11.4 cm by 10.8 cm.

c) volume doubles; volume triples; family of functions with zeros 24, 30, 0

d) Answers may vary. A sample solution is shown.

Chapter 2 Section 4

Question 19 Page 121

y = kx(x - 30)(x - 60)(x - 90)(x - 120)(x - 150)

Chapter 2 Section 4

Question 20 Page 122

a) height = xwidth = 24 - 2xlength = 36 - 2x

V(x) = x(36 - 2x)(24 - 2x)

- **b) i)** V(x) = 2x(36 2x)(24 2x)
 - ii) V(x) = 3x(36 2x)(24 2x)
- c) Family of functions with the same zeros: 0, 12, and 18.
- d) Note that the domain and range are greater or equal to zero.

e)
$$x(36-2x)(24-2x) = 1820$$

 $x(864-120x+4x^2) - 1820 = 0$
 $4x^3 - 120x^2 + 864x - 1820 = 0$
 $4(x^3 - 30x^2 + 216x - 455) = 0$
 $P(x) = x^3 - 30x^2 + 216x - 455$
 $P(5) = (5)^3 - 30(5)^2 + 216(5) - 455$
 $= 125 - 750 + 1080 - 455$
 $= 0$

Since 5 is a zero of the equation, (x - 5) is a factor. Divide to determine the other factors.

$$\begin{array}{r|ll} -5 & 1 & -30 & 216 & -455 \\ \hline - & -5 & 125 & -455 \\ \hline \times & 1 & -25 & 91 & 0 \\ \hline & (x-5)(x^2 - 25x + 91) = 0 \\ x = 5 \\ \text{or} \\ x = \frac{25 \pm \sqrt{(-25)^2 - 4(1)(91)}}{2(1)} \\ x = \frac{25 \pm \sqrt{261}}{2} \\ x \doteq 20.58 \text{ or } x \doteq 4.42 \\ \text{height} = 5 & \text{height} \doteq 20.58 \\ \text{width} = 14 & \text{width} \doteq -17.16 \\ \text{length} = 26 & \text{length} \doteq -5.16 \\ \text{length} = 27.16 \end{array}$$

Disregard the negative dimensions.

The possible dimensions of the box are approximately 27.16 cm by 15.16 cm by 4.42 cm or 26 cm by 14 cm by 5 cm.

Chapter 2 Section 4

Question 21 Page 122

Solutions to Achievement Check questions are provided in the Teacher's Resource.

Question 22 Page 122

a) Answers may vary. A sample solution is shown. y = k(3x-2)(x-5)(x+3)(x+2)

b) 4

- c) Answers may vary. A sample solution is shown. Substitute x = -1 and y = -96 and solve for k. -96 = k[3(-1)-2](-1-5)(-1+3)(-1+2) -96 = k(-5)(-6)(2)(1) -96 = 60k $k = -\frac{8}{5}$ An equation is $y = -\frac{8}{5}(3x-2)(x-5)(x+3)(x+2)$.
- d) Answers may vary. A sample solution is shown.

$$y = \frac{8}{5}(3x-2)(x-5)(x+3)(x+2)$$

Chapter 2 Section 4

Question 23 Page 122

Answers may vary. A sample solution is shown. $y = x(x - 20)(x - 30)(x - 70)(x - 90)(x - 100) \div 100\ 000\ 000$

Question 24 Page 122

The length of the chord is 24 cm.

Chapter 2 Section 4

Question 25 Page 122

$$g(x^{2}+2) = x^{4} + 5x^{2} + 3$$

$$= x^{4} + 4x^{2} + x^{2} + 4 - 1$$

$$= (x^{4} + 4x^{2} + 4) + x^{2} - 1$$

$$= (x^{2} + 2)^{2} + (x^{2} + 2) - 3 \quad \text{Factor } x^{4} + 4x^{2} + 4.$$

We have that $g(x) = x^{2} + x - 3.$

$$g(x^{2} - 1) = (x^{2} - 1)^{2} + (x^{2} - 1) - 3$$

$$= x^{4} - 2x^{2} + 1 + x^{2} - 4$$

$$= x^{4} - x^{2} - 3$$

$$g(x^{2} - 1) = x^{4} - x^{2} - 3$$

Chapter 2 Section 5	Solve Inequalities Using Technology
Chapter 2 Section 5	Question 1 Page 129
a) $-7 < x \le -1$	
b) $-2 < x \le 6$	
c) $x < -3, x \ge 4$	
d) $x \le -1, x \ge 1$	
Chapter 2 Section 5	Question 2 Page 129
a) $x < -1, -1 < x < 5, x > 5$	
b) $x < -7, -7 < x < 0, 0 < x < 2, x > 2$	
c) $x < -6, -6 < x < 0, 0 < x < 1, x > 1$	

d) $x < -4, -4 < x < -2, -2 < x < \frac{2}{5}, \frac{2}{5} < x < 4.3, x > 4.3$

Chapter 2 Section 5

Chapter 2 Section 5

Question 4 Page 129

Question 3 Page 129

- **a)** f(x) > 0 when x < -2 or 1 < x < 6
- **b)** f(x) < 0 when -3.6 < x < 0 or x > 4.7

Question 5 Page 130

a) i) The x-intercepts are -6 and 3.

ii) f(x) > 0 when -6 < x < 3

- iii) f(x) < 0 when x < -6, x > 3
- **b)** i) The x-intercepts are -2 and 5.
 - ii) f(x) > 0 when x < -2, x > 5

iii) f(x) < 0 when -2 < x < 5

- c) i) The x-intercepts are -4, 3, and 5.
 - ii) f(x) > 0 when -4 < x < 3, x > 5
 - iii) f(x) < 0 when x < -4, 3 < x < 5
- d) i) The *x*-intercepts are -4 and 1.

ii) f(x) > 0 when x < -4

iii) f(x) < 0 when -4 < x < 1, x > 1

Chapter 2 Section 5

Question 6 Page 130

a)

The values that satisfy the inequality $x^2 - x - 12 < 0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when -3 < x < 4.

The values that satisfy the inequality $x^2 + 8x + 15 \le 0$ are the values of x for which the graph is zero or negative (on or below the x-axis). From the graph, this occurs when $-5 \le x \le -3$.

The values that satisfy the inequality $x^3 - 6x^2 + 11x - 6 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when 1 < x < 2, x > 3.

The values that satisfy the inequality $x^3 + 8x^2 + 19x + 12 \ge 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs when $-4 \le x \le -3$, $x \ge -1$

The values that satisfy the inequality $x^3 - 2x^2 - 9x + 18 < 0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when x < -3, 2 < x < 3.

The values that satisfy the inequality $x^3 + x^2 - 16x - 16 \le 0$ are the values of x for which the graph is zero or negative (on or below the x-axis). From the graph, this occurs when $x \le -4$, $-1 \le x \le 4$.

Chapter 2 Section 5

Question 7 Page 130

a)

 $x \le -4$ or $x \ge 0.5$

b)

-0.5 < x < 3

c)

■NewProb Don ■solve(x ³ +5·x ² +2·x-8≤1	F1+ F2+ ToolsA19ebra	F3+ F4+ F CalcOther Pr3	5 F6+ ImiOC1ean UP
■NewProb Don ■solve(x ³ +5·x ² +2·x-8≤1			
■ solve(x ³ + 5·x ² + 2·x - 8 ≤	■ NewProb		Done
	solve(x	³ +5·× ² +	+ 2·× - 8 ≤)
-2.5x51.orx5-4 solve(x^3+5x^2+2x-8(=0,x)	-2 solve(x^3	2. ≤×≤1. 3+5×^2+2>	or x ≤ -4. <-8(=0,x)

 $x \le -4$ or $-2 \le x \le 1$

d)

F1+ F2+ Tools Algebr	aCalcOther Pi	FS F6+ r9ml0C1ean Up
■ NewPro	ь	Done
■ solve(× ³ +2·× ²	- 19·× - 20
…lve(x^) MaiN	3+2×^2-19 RAD APPROX	-20)0,x) FUNC 2/30

-5 < x < -1 or x > 4

e)

F1+ F2+ Tools Algebro	F3+ F4+ aCa1cOtherPr	F5 F6+ 9mlOC1ean Up	
NewProl	ь	Do	ne
solve()	< ³ − 39 ; × ·	-70<0,×)
	2. < x < 7.	. or x< -	5.
SOIVe(X'	BAD APPROX	FUNC 2/	30

x < -5 or -2 < x < 7

f)

(F1+) F2+ ToolsAl9ebra	F3+ F4+ Ca1c Other P	FS F6+ r9ml0 C1ean	UP
■ NewProb	0		Done
■ solve(>	(³ - 3·× ²	- 24 · × -	- 28) ≤ 7.
ve(x^3- Maix	3×^2-24>	<-28<=0,	×)

Question 8 Page 130

```
a)
```

The roots are approximately -4.65 and 0.65. The intervals are x < -4.65, -4.65 < x < 0.65, and x > 0.65.

For x < -4.65, test x = -5.

F1+ F2+ F3+ F4+ F5 ToolsAl9ebraCalcOtherPr9mI0	F6+ Clean Up
■ NewProb	Done
■ solve(x ² + 4·x - 3 = x = -4.64575 or x =	0,×) .645751
• × ² + 4·× - 3 < 0 × =	-5 6-1-6
x^2+4x-3(01x=-5	taise
MAIN BAD APPROX FUN	C 3/30

For -4.65 < x < 0.65, test x = 0.

For x > 0.65, test 1.

F1+ F2+ F3+ F4+ F5 F ToolsAl9ebraCalcOtherPr9mIOClea	'6+ 3η Up
■ × + + 4 · × - 3 < 0 × = -5	
	false
■ x ² + 4·x - 3 < 0 x = 0	true
$\mathbf{x}^2 + 4 \cdot \mathbf{x} - 3 < 0 \mathbf{x} = 1$	
	false
x^2+4x-3<01x=1	
MAIN RAD APPROX FUNC	5/30

The solution is -4.65 < x < 0.65 since the inequality is true for the values tested in this interval.

b)

(F1+) F2+ ToolsAl9ebro	(F3+) F4+ CalcOther	F5 F Pr9mIDC1ed	6+ IN UP
■ NewProb	, ,		Done
solve(4·×+8∶	=0,×)
x = -2 solve(-3	.4305 o x^2-4x+	r x = 1. 8=0,x)	09717
MAIN	RAD APPROX	FUNC	2/30

The roots are -2.43 and 1.10. The intervals are x < -2.43, -2.43 < x < 1.10, and x > 1.10.

For x < -2.43, test x = -5.

(F1+) F2+ F3+ F4+ F5 Too1s A19ebra Ca1c Other Pr9mi0	F6+ Clean Up
■ NewProb	Done
■ solve(-3·x ² - 4·x +	8=0,×)
x = -2.4305 or $x = -2.4305$	1.09717
■ -3·× ² - 4·× + 8 > 0	×= -5
	false
-3x^2-4x+8>01x=-5	
MAIN RAD APPROX FUN	NC 3/30

For -2.43 < x < 1.10, test 0.

F1+ F2+ F3+ F4+ F5 F6+
x = -2.4305 or x = 1.09713
-3·× ² - 4·× + 8 > 0 × = -5
false
■ -3·× ² - 4·×+8>0 ×=0
true
-3x^2-4x+8>01x=0
MAIN BAD APPROX FUNC 4/30

For x > 1.10, test x = 2.

F1+ F2+ F3+ F4+ F5 F6+ ToolsAl3ebraCalcOtherPr3mlOClean Up
false
■ -3·× ² - 4·× + 8 > 0 × = 0
true
■ -3·× ² - 4·× + 8 > 0 × = 2
false
-3x^2-4x+8>01x=2
MAIN RAD APPROX FUNC 5/30

The solution is -2.43 < x < 1.10 since the inequality is true for the value tested in this interval.

The roots are approximately -2.17, -0.31, and 1.48. The intervals are x < -2.17, -2.17 < x < -0.31, -0.31 < x < 1.48, and x > 1.48.

For x < -2.17, test x = -3.

F1+ F2+ F3+ F4+ ToolsAl9ebraCalcOthe	r F5 F6+ r Pr9ml0Clean Up
■ NewProb	Done
<pre>solve(x³ + x² {: =311108</pre>	$-3 \cdot x - 1 = 0,$ or $x = 1.48119$
• x ³ + x ² - 3·x -	-1≤0 × = -3
AT. AA T 44	true
X^3+X^2=3X=1K= MAIN BAD APPR	-01X

For -2.17 < x < -0.31, test x = -1.

F1+ F2+ F3+ F4+ F5 F6+ ToolsAlgebraCalcOtherPrgmlOClean Up
♦: =311108 or × = 1.48119
$ \times^3 + \times^2 - 3 \cdot \times - 1 \le 0 \times = -3 $
true
$\bullet \times^3 + \times^2 - 3 \cdot \times - 1 \le 0 \mid \times = -1$
false
x^3+x^2-3x-1<=01x=-1
MAIN RAD APPROX FUNC 4/30

For -0.31 < x < 1.48, test x = 1.

F1+ F2+ Tools Algebro	F3+ F4+ Ca1cOther	F5 Pr9mi0C	F6+ 1ean Up
			true
•× ³ +× ²	- 3·× -	1 ≤ 0	× = -1
			false
•× ³ +× ²	- 3·× -	1 ≤ 0	× = 1
			true
x^3+x^2-	3×-1<=0	$ \times = 1$	
MAIN	RAD APPROX	FUNC	5/30

For x > 1.48, test x = 5.

F1+ F2+ Tools Algebra	F3+ F4+ aCa1cOther	FS Pr9mi0C1e	F6+ an Up
			false
■× ³ +× ²	- 3·× - :	1 ≤ 0 ×	:= 1
			true
■× ³ + × ²	- 3·x - 1	1 ≤ 0 ×	:=5
			false
x^3+x^2-	-3×-1<=0	1×=5	
MAIN	RAD APPROX	FUNC	6/30

The solution is $x \le -2.17$ or $-0.31 \le x \le 1.48$, since the inequality is true for the values tested in these intervals. $x \le -2.17$ or $-0.31 \le x \le 1.48$

The roots are -2.12, -0.43, and 0.55. The intervals are x < -2.12, -2.12 < x < -0.43, -0.43 < x < 0.55, and x > 0.55.

For x < -2.12, test x = -10.

F1+ F2+ F3+ F4+ Tools Algebra Calc Other P	F5 F6+ r9ml0Clean Up
■ NewProb	Done
■ solve(2·x ³ + 4· 4 : = ~.426817 or	× ² - × - 1 = ► × = .551388
• 4 : ³ + 4·× ² − × −	$1 \ge 0 \mid x = -10$
	false
2x^3+4x^2-x-1>=0	01×=-10
MAIN BAD APPROX	FUNC 3/30

For -2.12 < x < -0.43, test x = -1.

F1+ F2+ F3+ F4+ F5 F6+ ToolsA19ebraCalcOtherPr9mlOClean Up
♦: =426817 or x = .551388
• $4(^3 + 4) \times (^2 - x - 1) \ge 0$ $x = -16$
false
$\blacksquare \P \times^3 + 4 \cdot \times^2 - \times -1 \ge 0 \mid \times = -1$
true
2*x^3+4*x^2-x-1≥01x=-1
MAIN RAD APPROX FUNC 4/30

-0.43 < x < 0.55, test x = 0.

F1+ F2+ Tools Algebro	F3+ F4+ Ca1c Other P	FS F r9mi0Cle	67 3N UP
			false
■ 4 × ³ + 4	+·× ² − × -	-1≥0	× = -1
			true
■2·× ³ +	4·× ² − ×	-1≥0	× = 0
			false
2*x^3+4*	<<^2=×=1;	≥01x=0	
MAIN	RAD APPROX	FUNC	5/30

x > 0.55, test x = 10.

F1+ F2+ F3+ F4+ F5 F ToolsAl9ebraCalcOtherPr9mlOClea	6+ 3N UP
	true
$\bullet 2 \cdot \times^3 + 4 \cdot \times^2 - \times -1 \ge 0$	×=0
	false
$\bullet \P \cdot \times^3 + 4 \cdot \times^2 - \times - 1 \ge 0$	× = 16
	true
2*x^3+4*x^2-x-1≥01x=1	0
MAIN RAD APPROX FUNC	6/30

The solution is $-2.12 \le x \le -0.43$ or $x \ge 0.55$, since the inequality is true for the values tested in these intervals.

The roots are -1.93, -0.48, and 1.08. The intervals are x < -1.93, -1.93 < x < -0.48, -0.48 < x < 1.08, and x > 1.08.

x < -1.93, test x = -2.

F1+ F2+ F3+ F4+	FS F6+
ToolsAl9ebraCalcOther	Pr9ml0Clean Up
■ NewProb	Done
■ 4 3·× ³ + 4·× ² -	5·×−3=0,×)
4 : =481504 c	r ×=1.07683
■ 4 ³ + 4·× ² - 5·×	- 3 < 0 × = -2
7 47.4 40 F 7	true
SXCS+4XC2-5X-34	COTX=22
Main Rad Approx	K FUNC 3/30

-1.93 < x < -0.48, test x = -1.

F1+ F2 Tools A194	2+ F3+ F4+ braCa1cOtherPr	FS F6 '9ml0C1ear	, III)
4:= -	.481504 or	×=1.	07683
■ 4 ³ + 4	··× ² - 5·× -	3<0	×= -2
			true
∎3·× ³	+ 4·× ² - 5·	x - 3 < 1	0 ×)
			fälse
3x^3+4	x^2-5x-3<0) ×=-1	
MAIN	RAD APPROX	FUNC	4/30

-0.48 < x < 1.08, test x = 0.

F1+ F2 Too1s A19el	+ F3+ F4+ braCa1c0ther	F5 Pr9mi0	F6+ Clean Up	
			tr	rue
• 3·× ³ ·	+4·× ² -5	$\cdot \times - 3$	3 < 0 :	×Þ
			fal	lse
• 3·× ³ ·	+ 4·× ² – 5	$\cdot \times - 3$	3 < 0 :	×Þ
			tr	hue
3x^3+4;	x^2-5x-3<	01×=	Θ	
MAIN	RAD APPROX	FUN	IC 5	/30

x > 1.08, test x = 2.

F1+ Tools	F2+ A19ebra	[73+ Calc	F4+ Other	F5 Pr9mi0	F6+ Clean UP	\square
	_		-		fa	lse
■ 3 ·	× ³ +4	٠×،	2 - 5	$\cdot \times -$	3<0	×Þ
	7				ti	rue
■ 3·	× ³ +4	ŀ·×'	- 5	· × -	3<0	×Þ
3x^3	3+4×^	2-5	x-3<	(01x=	1a. 20	ise
MAIN		RAD	APPRO:	EUN	IC 6	i/30

The solution is x < -1.93 or -0.48 < x < 1.08, since the inequality is true for the values tested in these intervals.

 F1+ F2- F3 F4+
 F5
 F6+

 Tools[a13ebra]Calc]0ther[Pr3mi0]Clean Up]

 • NewProb
 Done

 • Vue($-x^4 + x^3 - 2 \cdot x + 3 = 0, x)$

 x = -1.3438 or x = 1.25228

 SOlve($-x^4 + x^3 - 2 \cdot x + 3 = 0, x)$

 main
 Eab APPEND

f)

The roots are -1.34 and 1.25. The intervals are x < -1.34, -1.34 < x < 1.25, and x > 1.25.

x < -1.34, test x = -3

-1.34 < x < 1.25, test x = 0.

x > 1.25, test x = 4.

The solution is $-1.34 \le x \le 1.25$, since the inequality is true for the value tested in this interval.

Question 9 Page 130

The values that satisfy the inequality $5x^3 - 7x^2 - x + 4 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs approximately when x > -0.67.

The values that satisfy the inequality $-x^3 + 28x + 48 \ge 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs when $x \le -4$ or $-2 \le x \le 6$.

The values that satisfy the inequality $3x^3 + 4x^2 - 35x - 12 \le 0$ are the values of x for which the graph is zero or negative (on or below the x-axis). From the graph, this occurs when $x \le -4$ or $-\frac{1}{3} \le x \le 3$.

The values that satisfy the inequality $3x^3 + 2x^2 - 11x - 10 < 0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when

$$x < -\frac{5}{3}$$
 or $-1 < x < 2$.

The values that satisfy the inequality $-2x^3 + x^2 + 13x + 6 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when x < -2 or $-\frac{1}{2} < x < 3$.

The values that satisfy the inequality $2x^4 + x^3 - 26x^2 - 37x - 12 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when

$$x < -3 \text{ or } -1 < x < -\frac{1}{2} \text{ or } x > 4.$$

Question 10 Page 131

The height of the ball is greater than 15 m approximately when $0.50 \le t \le 6.03$, or between about 0.5 s and 6.03 s.

Question 11 Page 131

The tent caterpillar population was greater than 10 000 approximately when $2.73 \le t \le 5.51$, or between later in the second week and halfway through the fifth week.

There are no tent caterpillars left.

Question 12 Page 131

a) Write the inequality as $0.1t^3 - 2t + 8 < 8$ $0.1t^3 - 2t + 8 - 8 < 0$ $0.1t^3 - 2t < 8 - 8 < 0$

Graph the function $y = 0.1t^3 - 2t$

There are fewer than 8000 on-line customers between 0 and approximately 4.47 years.

b) Write the inequality as $0.1t^3 - 2t + 8 > 10$ $0.1t^3 - 2t + 8 - 10 > 0$ $0.1t^3 - 2t - 2 > 0$

Graph the function $y = 0.1t^3 - 2t - 2$

The number of on-line customers exceeds 10 000 after approximately 4.91 years.

Question 13 Page 131

Answers may vary. A sample solution is shown.

- a) i) $(x-1)(x^2+1) > 0$ or $x^3 x^2 + x 1$ ii) $x(x-1)^2 > 0$ or $x^3 - 2x^2 + x$ iii) $x(x-1)^2 > 0$ or $x^3 - 2x^2 + x$
- **b) i)** x > 1**ii)** 0 < x < 1, x > 1**iii)** 0 < x < 1, x > 1

Chapter 2 Section 5

Question 14 Page 131

Answers may vary. A sample solution is shown.

- a) i) $(x^2 + 1)(x^2 + 3) > 0$ or $x^4 + 4x^2 + 3$ ii) $x^2(x-1)^2 > 0$ or $x^4 - 2x^3 + x^2$ iii) $x^2(x-1)(x+1) > 0$ or $x^4 - x^2$ iv) $x^2(x-1)^2 > 0$ or $x^4 - 2x^3 + x^2$
- b) i) $x \in \mathbb{R}$ ii) x < 0, 0 < x < 1, x > 1iii) x < 0, x > 1iv) x < 0, 0 < x < 1, x > 1

Chapter 2 Section 5

Question 15 Page 131

Answers may vary. A sample solution is shown. a) $(3x+2)(5x-4)(2x-7) > 0, -30x^3 - 109x^2 - 2x - 56 < 0$

b) $x^3 - 2x^2 - 10x + 8 > 0, -x^3 + 2x^2 + 10x - 8 < 0$

Chapter 2 Section 5

Question 16 Page 131

 $3x^4 - 6x^4 + 5x^3 + 2x^2 + x^2 - 4x + 9x + 6 - 2 \ge 0$ -3x⁴ + 5x³ + 3x² + 5x + 4 \ge 0

The equality is satisfied for approximately $-0.66 \le x \le 2.45$.
a) Graph the function.

or

Domain

 $\left\{ \begin{aligned} & \left\{ x \in \mathbb{R}, -1 \le x \le 0 \right\}, \\ & \left\{ y \in \mathbb{R}, 0 \le y \le \frac{1}{2} \right\} \end{aligned} \right\}$

Question 18 Page 131

PQ = PR (both tangents to the circle from the same point) QO = RO (radius of the circle) PO = PO (common) Therefore, \triangle PQO $\cong \triangle$ PRO and \angle POQ = \angle POR

Chapter 2 Section 5

Question 19 Page 131

$$f\left(\frac{5}{3}\right) = k\left(\frac{5}{3}\right)^2 - b\left(\frac{5}{3}\right) + k$$
$$0 = \frac{25}{9}k - \frac{5}{3}b + k$$
$$0 = \left(\frac{25}{9} + 1\right)k - \frac{5}{3}b$$
$$\frac{34}{9}k = \frac{15}{9}b$$
$$34k = 15b$$
$$\frac{k}{b} = \frac{15}{34}$$
$$k : b = 15:34$$

Chapter 2 Section 5

Question 20 Page 131

$$(PR)^2 = 4^2 + (RS)^2$$

 $(QR)^2 = 6^2 + (RS)^2$

$$10^{2} = (PR)^{2} + (QR)^{2}$$

$$10^{2} = (4^{2} + (RS)^{2}) + (6^{2} + (RS)^{2})$$

$$100 = 16 + (RS)^{2} + 36 + (RS)^{2}$$

$$48 = 2(RS)^{2}$$

$$24 = (RS)^{2}$$

$$\sqrt{24} = RS$$

$$2\sqrt{6} = RS$$

The exact length of RS is $2\sqrt{6}$.

Solve Factorable Polynomial Inequalities Algebraically

Question 1 Page 138

MHR • Advanced Functions 12 Solutions 195

Question 2 Page 138

Chapter 2 Section 6

Question 3 Page 138

c)
$$-\frac{1}{4} \le x \le 2$$

 $-\frac{1}{2} -\frac{1}{2} -\frac{1}{2} -\frac{1}{2} -\frac{1}{2} -\frac{3}{2} -\frac{5}{2} -\frac{5}{2} -\frac{3}{2}$

Chapter 2 Section 6

Question 4 Page 138

Case 1 x+2>0 3-x>0 x+1<0 x>-2 x<3 x<-1-2 < x < -1 is a solution.

Case 2 x + 2 > 0 3 - x < 0 x + 1 > 0 x > -2 x > 3 x > -1x > 3 is a solution.

Case 3 x + 2 < 0 3 - x > 0 x + 1 > 0x < -2 x < 3 x > -1

No solution since no x-values common to all three inequalities.

Case 4 x+2 < 0 3-x < 0 x+1 < 0x < -2 x > 3 x < -1

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is -2 < x < -1 or x > 3.

b) Consider all cases.

Case 1

$$-x + 1 \ge 0$$
 $3x - 1 \ge 0$ $x + 7 \ge 0$
 $1 \ge x$ $3x \ge 1$ $x \ge -7$
 $x \le 1$ $x \ge \frac{1}{3}$
 $\frac{1}{3} \le x \le 1$ is a solution.
Case 2

$$-x + 1 \ge 0$$
 $3x - 1 \le 0$ $x + 7 \le 0$
 $x \le 1$ $x \le \frac{1}{3}$ $x \le -7$

 $x \leq -7$ is a solution.

Case 3

$$-x + 1 \le 0 \quad 3x - 1 \ge 0 \quad x + 7 \le 0$$

$$x \ge 1 \qquad x \ge \frac{1}{3} \qquad x \le -7$$

No solution since no x-values common to all three inequalities.

Case 4 $-x + 1 \le 0$ $3x - 1 \le 0$ $x + 7 \ge 0$ $x \ge 1$ $x \le \frac{1}{3}$ $x \ge -7$

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $x \le -7$ or $\frac{1}{3} \le x \le 1$.

c) Consider all cases.

Case 1

$$7x + 2 > 0$$
 $1 - x > 0$ $2x + 5 > 0$
 $7x > -2$ $1 > x$ $2x > -5$
 $x > -\frac{2}{7}$ $x < 1$ $x > -\frac{5}{2}$
 $-\frac{2}{7} < x < 1$ is a solution.

Case 2 7x + 2 > 0 1 - x < 0 2x + 5 < 0 $x > -\frac{2}{7}$ x > 1 $x < -\frac{5}{2}$

No solution since no x-values common to all three inequalities.

Case 3

$$7x + 2 < 0$$
 $1 - x < 0$ $2x + 5 > 0$
 $x < -\frac{2}{7}$ $x > 1$ $x > -\frac{5}{7}$

No solution since no x-values common to all three inequalities.

Case 4

$$7x + 2 < 0$$
 $1 - x > 0$ $2x + 5 < 0$
 $x < -\frac{2}{7}$ $x < 1$ $x < -\frac{5}{2}$
 $x < -\frac{5}{2}$ is a solution.

Combining the results of all the cases, the solution is $x < -\frac{5}{2}$ or $-\frac{2}{7} < x < 1$.

d) Consider all cases.

Case 1

$$x + 4 \le 0 \qquad -3x + 1 \le 0 \qquad x + 2 \le 0$$

$$x \le -4 \qquad -3x \le -1 \qquad x \le -2$$

$$x \ge \frac{1}{3}$$

No solution since no x-values common to all three inequalities.

Case 2 $x + 4 \ge 0 \quad -3x + 1 \ge 0 \quad x + 2 \le 0$ $x \ge -4 \quad x \le \frac{1}{3} \quad x \le -2$ $-4 \le x \le -2 \text{ is a solution.}$ Case 3 $x + 4 \ge 0 \quad -3x + 1 \le 0 \quad x + 2 \ge 0$ $x \ge -4 \quad x \ge \frac{1}{3} \quad x \ge -2$ $x \ge \frac{1}{3} \text{ is a solution.}$ Case 4 $x + 4 \le 0 \quad -3x + 1 \ge 0 \quad x + 2 \ge 0$ $x \le -4 \quad x \le \frac{1}{3} \quad x \ge -2$

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $-4 \le x \le -2$ or $x \ge \frac{1}{3}$.

Question 5 Page 139

a) $(x-3)(x-5) \ge 0$ Consider all cases.

> Case 1 $x-3 \ge 0$ $x-5 \ge 0$ $x \ge 3$ $x \ge 5$ Solution is $x \ge 5$.

> Case 2 $x-3 \le 0$ $x-5 \le 0$ $x \le 3$ $x \le 5$ Solution is $x \le 3$.

Combining the results of all the cases, the solution is $x \le 3$ or $x \ge 5$.

b) (x-5)(x+3) < 0Consider all cases.

> Case 1 x-5 < 0 x+3 > 0 x < 5 x > -3Solution is -3 < x < 5.

> Case 2 x-5 > 0 x+3 < 0x > 5 x < -3

No solution since no x-values common to both inequalities.

Combining the results of all the cases, the solution is -3 < x < 5.

c) $(3x-4)(5x+2) \le 0$ Consider all cases.

> Case 1 $3x - 4 \le 0 \quad 5x + 2 \ge 0$ $3x \le 4 \quad 5x \ge -2$ $x \le \frac{4}{3} \quad x \ge -\frac{2}{5}$ Solution is $-\frac{2}{5} \le x \le \frac{4}{3}$. Case 2 $3x - 4 \ge 0 \quad 5x + 2 \le 0$ $x \ge \frac{4}{3} \quad x \le -\frac{2}{5}$

No solution since no x-values common to both inequalities.

d) Factor using the factor theorem. (x-3)(x-1)(x+2) < 0Consider all cases.

Case 1 x-3 < 0 x-1 < 0 x+2 < 0x < 3 x < 1 x < -2

x < -2 is a solution.

Case 2 x-3 < 0 x-1 > 0 x+2 > 0x < 3 x > 1 x > -2

1 < x < 3 is a solution.

Case 3 x-3 > 0 x-1 < 0 x+2 > 0x > 3 x < 1 x > -2

No solution since no x-values common to all three inequalities.

Case 4 x-3 > 0 x-1 > 0 x+2 < 0x > 3 x > 1 x < -2

No solution since no *x*-values common to all three inequalities.

Combining the results of all the cases, the solution is x < -2 or 1 < x < 3.

e) $(x-1)(x+1)(2x+3) \ge 0$ Consider all cases.

Case 1

$$x-1 \ge 0$$
 $x+1 \ge 0$ $2x+3 \ge 0$
 $x \ge 1$ $x \ge -1$ $2x \ge -3$
 $x \ge -\frac{3}{2}$

 $x \ge 1$ is a solution.

Case 2 $x-1 \le 0$ $x+1 \le 0$ $2x+3 \ge 0$ $x \le 1$ $x \le -1$ $x \ge -\frac{3}{2}$ $-\frac{3}{2} \le x \le -1$ is a solution.

Case 3 $x-1 \le 0$ $x+1 \ge 0$ $2x+3 \le 0$ $x \le 1$ $x \ge -1$ $x \le -\frac{3}{2}$

No solution since no x-values common to all three inequalities.

Case 4 $x-1 \ge 0$ $x+1 \le 0$ $2x+3 \le 0$ $x \ge 1$ $x \le -1$ $x \le -\frac{3}{2}$

No solution since no *x*-values common to all three inequalities.

a) $(x + 5.09)(x^2 + 0.91x + 2.36) \ge 0$ Use the root -5.09 to break the number line into two intervals.

Test arbitrary values of *x* for each interval.

For x < -5.09, test x = -6. $(-6)^3 + 6(-6)^3 + 6(-6)^2 + 7(-6) + 12 = -30$ Since -30 < 0, x < -5.09 is not a solution.

For x > -5.09, test x = 0. $(0)^3 + 6(0)^2 + 7(0) + 12 = 12$ Since 12 > 0, x > -5.09 is a solution.

The solution is approximately $x \ge -5.09$.

b)
$$(x + 2)(x + 3)(x + 4) < 0$$

Use the roots -2, -3, and -4 to break the number line into four intervals.
 $x < -4$ $-4 < x < -3$ $-3 < x < -2$ $x > -2$
 -5 -4 -3 -2 -1 0 1
For $x < -4$, test $x = -5$.
 $(-5 + 2)(-5 + 3)(-5 + 4) = -6$
 $-6 < 0, x < -4$ is a solution.
For $-4 < x < -3$, test $x = -3.5$.
 $(-3.5 + 2)(-3.5 + 3)(-3.5 + 4) = 0.375$
 $0.375 > 0, -4 < x < -3$ is not a solution.
For $-3 < x < -2$, test $x = -2.5$.
 $(-2.5 + 2)(-2.5 + 3)(-2.5 + 4) = -0.375$
 $-0.375 < 0, -3 < x < -2$ is a solution.
For $x > -2$, test $x = 0$.
 $(0 + 2)(0 + 3)(0 + 4) = 24$
 $24 > 0, x > -2$ is not a solution.

The solution is x < -4 or $-3 \le x \le -2$.

c) $(x-3)(x+1)(5x-2) \le 0$ Use the roots 3, -1, and $\frac{2}{5}$ to break the number line into four intervals. x < -1 $-1 < x < \frac{2}{5}$ -2 -1 $-1 < x < \frac{2}{5}$ -1 $-1 < x < \frac{2}{5}$ -2 -1 -1 $-1 < x < \frac{2}{5}$ -2 -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -1 -2 -3 -2 -2 -1 -2 -3 -2 -2 -2 -2 -2 -2 -2 -60-60 < 0, x < -1 is a solution.

For
$$-1 < x < \frac{2}{5}$$
, test $x = 0$.
 $(0-3)(0+1)[5(0)-2] = 6$
 $6 > 0, -1 < x < \frac{2}{5}$ is not a solution.

For
$$\frac{2}{5} < x < 3$$
, test $x = 1$.
 $(1-3)(1+1)[5(1)-2] = -12$
 $-12 < 0$, $\frac{2}{5} < x < 3$ is a solution

For x > 3, test x = 4. (4-3)(4+1)[5(4)-2] = 9090 > 0, x > 3 is not a solution.

The solution is $x \le -1$ or $\frac{2}{5} \le x \le 3$.

d) Using CAS to factor. $6(x^{2} - 2.64x + 2.40)(x^{2} + 1.48x + 0.83) > 0$ $x^{2} - 2.64x + 2.40 = 0$ $x = \frac{2.64 \pm \sqrt{(-2.64)^{2} - 4(1)(2.40)}}{2(1)}$ $x = \frac{2.64 \pm \sqrt{-2.63}}{2}$

There are no real roots.

The function is above the *x*-axis so it is positive for all values of *x*. $x^2 + 1.48x + 0.83 > 0$ is true for all values of *x*.

Question 7 Page 139

a) $(x+5)(x-1) \le 0$ The roots are x = -5 and x = 1. Consider all cases.

Case 1 x < -5 x > 1No solution since no *x*-values common to both inequalities.

Case 2 x > -5 x < 1Solution is -5 < x < 1.

Combining the results of all the cases, the solution is $-5 \le x \le 1$.

b) (3-x)(x+2)(2x+1) < 0

The roots are x = 3, x = -2, and $x = -\frac{1}{2}$. Consider all cases.

Case 1 3 - x < 0 x + 2 < 0 2x + 1 < 0 3 < x x < -2 2x < -1x > 3 $x < -\frac{1}{2}$

No solution since no x-values common to all three inequalities.

Case 2 3-x < 0	x + 2 > 0	2x + 1 > 0
<i>x</i> > 3	x > -2	$x > -\frac{1}{2}$

The solution is x > 3.

Case 3 3-x > 0	x + 2 < 0	2x + 1 > 0
<i>x</i> < 3	<i>x</i> < -2	$x > -\frac{1}{2}$

No solution since no x-values common to all three inequalities.

Case 4 3-x > 0 x+2 > 0 2x + 1 < 0 x < 3 x > -2 $x < -\frac{1}{2}$ The solution is $-2 < x < -\frac{1}{2}$.

Combining the results of all the cases, the solution is $-2 < x < -\frac{1}{2}$ or x > 3.

c) (x-1)(x+1)(2x+1) > 0Consider all cases.

Case 1

$$x-1 > 0$$
 $x+1 > 0$ $2x+1 > 0$
 $x > 1$ $x > -1$ $2x > -1$
 $x > -\frac{1}{2}$

x > 1 is a solution.

Case 2 x - 1 < 0 x + 1 < 0 2x + 1 > 0x < 1 x < -1 $x > -\frac{1}{2}$

No solution since no x-values common to all three inequalities.

Case 3

$$x-1 > 0$$
 $x+1 < 0$ $2x+1 < 0$
 $x > 1$ $x < -1$ $x < -\frac{1}{2}$

No solution since no *x*-values common to all three inequalities.

Case 4

$$x - 1 < 0$$
 $x + 1 > 0$ $2x + 1 < 0$
 $x < 1$ $x > 1$ $x < -\frac{1}{2}$
 $-1 < x < -\frac{1}{2}$ is a solution.

Combining the results of all the cases, the solution is $-1 < x < -\frac{1}{2}$ or x > 1.

d) Factor first.

$$(x-1)(x^{2} + x - 4) = 0$$

$$x = 1$$

or

$$x = \frac{-1 \pm \sqrt{1^{2} - 4(1)(-4)}}{2(1)}$$

$$x = \frac{-1 \pm \sqrt{17}}{2} \text{ or } x = \frac{-1 - \sqrt{17}}{2}$$

Use the roots to break the number line into intervals.

$$(1.5)^3 - 5(1.5) + 4 = -0.125$$

-0.125 < 0, 1 < x < $\frac{-1 + \sqrt{17}}{2}$ is not a solution.

For
$$x > \frac{-1 + \sqrt{17}}{2}$$
, test $x = 3$.
 $(3)^3 - 5(3) + 4 = 16$
 $16 > 0, x > \frac{-1 + \sqrt{17}}{2}$ is a solution.

The solution is
$$\frac{-1 - \sqrt{17}}{2} \le x \le 1 \text{ or } x \ge \frac{-1 + \sqrt{17}}{2}$$
.

Question 8 Page 139

$$(6+x)(18+x)(20+x) \ge 5280$$

$$(x^{2}+24x+108)(20+x)-5280 \ge 0$$

$$x^{3}+44x^{2}+588x+2160-5280 \ge 0$$

$$x^{3}+44x^{2}+588x-3120 \ge 0$$

$$(x-4)(x^{2}+48x+780) \ge 0$$

The root is $x = 4$, $x^{2} + 48x + 780$ is positive for all values of x .

x > 4, test x = 5. $(5-4)(5^2 + 48(5) + 780) = 1045$ 1045 > 0, x > 4 $x \ge 4$ is the solution.

6 + 4 = 1018 + 4 = 2220 + 4 = 24

22 cm by 24 cm by 10 cm are the minimum dimensions

Question 9 Page 139

 $0.5t^{3} - 5.5t^{2} + 14t > 90$ $0.5t^{3} - 5.5t^{2} + 14t - 90 > 0$ $0.5(t^{3} - 11t^{2} + 28t - 180) > 0$ $0.5(x - 10)(x^{2} - x + 18) > 0$ x > 10

The price of stock will be above \$90 after 10 years (in 2009).

Chapter 2 Section 6

Question 10 Page 139

Solutions to Achievement Check questions are provided in the Teacher's Resource.

Chapter 2 Section 6

Question 11 Page 139

- a) 8 cases
 - x + 4 negative, the rest positive
 - x 2 negative, the rest positive
 - x + 1 negative, the rest positive
 - x 1 negative, the rest positive
 - x + 4 positive, the rest negative
 - x 2 positive, the rest negative
 - x + 1 positive, the rest negative
 - x 1 positive, the rest negative

b) Answers may vary. A sample solution is shown.

Probably, because there are fewer intervals to look at than cases above: x < -4, -4 < x < -1, -1 < x 1, 1 < x < 2, x > 2

Question 12 Page 139

$$x^{5} - 5x^{4} + 7x^{3} - 7x^{2} + 6x - 2 = 0$$

(x-1)(x²+1)(x² - 4x + 2) = 0
x = 1
or
$$x = \frac{4 \pm \sqrt{(-4)^{2} - 4(1)(2)}}{2(1)}$$

$$x = \frac{4 \pm \sqrt{8}}{2} = \frac{4 \pm 2\sqrt{2}}{2}$$

$$x = 2 + \sqrt{2}, x = 3.41$$

or x = 2 - \sqrt{2}, x = 0.59

Use the roots to break the number line into three intervals.

For x < 0.59, test x = -1. $(-1)^5 - 5(-1)^4 + 7(-1)^3 - 7(-1)^2 + 6(-1) - 2 = -28$ -28 < 0, x < 0.59 is a solution.

For 0.59 < x < 1, test x = 0.8. $(0.8)^5 - 5(0.8)^4 + 7(0.8)^3 - 7(0.8)^2 + 6(0.8) - 2 = 0.18$ 0.18 > 0, 0.59 < x < 1 is not a solution.

For 1 < x < 3.41, test x = 2. $(2)^5 - 5(2)^4 + 7(2)^3 - 7(2)^2 + 6(2) - 2 = -10$ -10 < 0, 1 < x < 3.41 is a solution.

For x > 3.41, test x = 5. $(5)^5 - 5(5)^4 + 7(5)^3 - 7(5)^2 + 6(5) - 2 = 728$ 728 > 0, x > 3.41 is not a solution.

The solution is approximately x < 0.59 or 1 < x < 3.41.

Question 13 Page 139

a) $10\ 242 < -0.15n^5 + 3n^4 + 5560 < 25\ 325$ Graph P(n) and the lines $P(n) = 10\ 242$ and $P(n) = 25\ 325$ and find the points of intersection.

The population of the town will be between 10 242 and 25 325 at approximately $7 \le n \le 11$ or $19 \le n \le 20$, or between 7 and 11 years from today and between 19 and 20 years from today.

The population of the town is more than 30 443 at approximately 12 < n < 18.6, or between 12 and 19 years from today.

Not valid beyond 20 years. 20 years from today the population will have fallen to 5560, and in the next year it would fall below 0, which is not possible.

Chapter 2 Section 6

Question 14 Page 139

$$x^4 - 76x^2 + 1156 \le 0, \, x^4 + 76x^2 - 1156 \ge 0$$

Chapter 2 Section 6

Question 15 Page 139

Method 1:

Add line segments to make $\triangle PQA$ and $\triangle PBQ$. Both triangles share $\angle P$ and because PQ is tangent to the circle, $\angle PQB = \angle QAB$. Therefore, $\triangle PQA$ is similar to $\triangle PBQ$. So, write a ratio that can be used to determine the length of PQ:

 $\frac{PQ}{AP} = \frac{BP}{PQ}$ $PQ^{2} = AP \times BP$ $PQ^{2} = 22 \times 13$ $PQ = \sqrt{286}$

Method 2:

From the tangent-secant theorem that states that if a tangent from an external point P meets the circle at Q and a secant from the same point P meets the circle at B and A, then

$$PQ^{2} = PA \times PB$$
$$PQ^{2} = 22 \times 13$$
$$PQ = \sqrt{286}$$

Question 16 Page 139

Instantaneous rate of change (slope) at the point (4, -3) on the circle is $\frac{4}{3}$.

Substitute x = 4 and y = -3 into $y = \frac{4}{3}x + b$. $-3 = \frac{4}{3}(4) + b$ $-3 = \frac{16}{3} + b$ $-\frac{9}{3} - \frac{16}{3} = b$ $-\frac{25}{3} = b$ $y = \frac{4}{3}x - \frac{25}{3}$

Chapter 2 Review

Question 1 Page 140

a) i)
$$P(2) = (2)^3 + 9(2)^2 - 5(2) + 3 = 37$$

ii)

$$\begin{array}{c|c} -2 & 1 & 9 & -5 & 3 \\ \hline & -2 & -2 & -22 & -34 \\ \hline & \times & 1 & 11 & 17 & 37 \end{array}$$

$$\begin{array}{c|c} \frac{x^3 + 9x^2 - 5x + 3}{x - 2} = x^2 + 11x + 17 + \frac{37}{x - 2}, \ x \neq 2 \end{array}$$
b) i) $P\left(-\frac{1}{3}\right) = 12\left(-\frac{1}{3}\right)^3 - 2\left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right) - 11 = -12$
ii)
ii)

$$\begin{array}{c} \frac{4x^2 - 2x + 1}{3x + 1} \\ \frac{12x^3 - 2x^2 + x - 11}{-6x^2 + x} \\ \frac{-6x^2 - 2x}{3x - 11} \end{array}$$

$$\frac{3x+1}{-12}$$

$$\frac{12x^3 - 2x^2 + x - 11}{3x + 1} = 4x^2 - 2x + 1 - \frac{12}{3x + 1}, \ x \neq -\frac{1}{3}$$

c) i)
$$P\left(\frac{1}{2}\right) = -8\left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right) + 10\left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 + 15 = \frac{27}{2}$$

$$-4x^{3} + 3x^{2} + x - \frac{3}{2}$$

$$2x - 1 \overline{\smash{\big)}} - 8x^{4} + 10x^{3} - x^{2} - 4x + 15$$

$$-\frac{8x^{4} + 4x^{3}}{6x^{3} - x^{2}}$$

$$\frac{6x^{3} - 3x^{2}}{2x^{2} - 4x}$$

$$\frac{2x^{2} - x}{-3x + 15}$$

$$-\frac{3x + \frac{3}{2}}{\frac{27}{2}}$$

$$\frac{-8x^4 - 4x + 10x^3 - x^2 + 15}{2x - 1} = -4x^3 + 3x^2 + x - \frac{3}{2} + \frac{27}{2(2x - 1)}, \ x \neq \frac{1}{2}$$

Question 2 Page 140

a)
$$f(3) = 3^4 + k(3)^3 - 3(3) - 5 = -10$$

 $81 + 27k - 9 - 5 = -10$
 $27k = -10 - 67$
 $27k = -77$
 $k = -\frac{77}{27}$

b)
$$f(-3) = (-3)^4 - \frac{77}{27}(-3)^3 - 3(-3) - 5$$

= 162

c)

(F1+) 5)	1:300 (No.)	FS 50
Tools(83,3,824	1:000 (0?av.) Pr	9ml0 :3436 8:
■ NewProl	ь	Done
■ 4 - 77/2	_{27·×} 3–3.	×-5 ×=-3
×^4−(77/ Main	(27)×^3-3 Bad Approx	162. x-51x=-3 FUNC 2/2

Question 3 Page 140

$$P(1) = 4 - 3 + b + 6$$

= 7 + b
$$P(-3) = 4(-3)^{3} - 3(-3)^{2} - 3b + 6$$

= -108 - 27 - 3b + 6
= -129 - 3b
$$7 + b = -129 - 3b$$

$$b + 3b = -129 - 7$$

$$4b = -136$$

$$b = -34$$

Chapter 2 Review

Question 4 Page 140

a) P(-1) = -1 - 4 - 1 + 6= 0 (x + 1) is a factor.

Divide to determine the other factors.

$$\frac{1}{-1} \begin{vmatrix} 1 & -4 & 1 & 6 \\ 1 & -5 & 6 \\ \hline x & 1 & -5 & 6 \\ \hline x^3 - 4x^2 + x + 6 &= (x+1)(x^2 - 5x + 6) \\ &= (x+1)(x-3)(x-2) \end{vmatrix}$$

b) $P(-2) = 3(-2)^3 - 5(-2)^2 - 26(-2) - 8 \\ &= 0 \\ (x+2) \text{ is a factor.}$
$$\frac{2 \begin{vmatrix} 3 & -5 & -26 & -8 \\ - & 6 & -22 & -8 \\ \hline x & 3 & -11 & -4 & 0 \\ \hline 3x^3 - 5x^2 - 26x - 8 &= (x+2)(3x^2 - 11x - 4) \\ &= (x+2)(3x+1)(x-4) \end{vmatrix}$$

c)
$$P(1) = 5 + 12 - 101 + 48 + 36$$

 $= 0$
 $(x - 1)$ is a factor.
 $-\frac{1}{5}$ 12 -101 48 36
 $-\frac{5}{5}$ -17 84 36
 x 5 17 -84 -36 0
 $5x^4 + 12x^3 - 101x^2 + 48x + 36 = (x - 1)(5x^3 + 17x^2 - 84x - 36)$
 $P(3) = 5(3)^3 + 17(3)^2 - 84(3) - 36$
 $= 0$
 $(x - 3)$ is a factor.
 $-\frac{3}{5}$ 17 -84 -36
 $-\frac{-15 - 96 - 36}{-15 - 96 - 36}$
 x 5 32 12 0
 $5x^4 + 12x^3 - 101x^2 + 48x + 36 = (x - 1)(x - 3)(5x^2 + 32x + 12)$
 $= (x - 1)(x - 3)(x + 6)(5x + 2)$

Question 5 Page 140

a)
$$-4x^3 - 4x^2 + 16x + 16 = -4(x^3 + x^2 - 4x - 4)$$

= $-4[x^2(x+1) - 4(x+1)]$
= $-4(x+1)(x^2 - 4)$
= $-4(x+1)(x+2)(x-2)$

b)
$$25x^3 - 50x^2 - 9x + 18 = 25x^2(x-2) - 9(x-2)$$

= $(x-2)(25x^2 - 9)$
= $(x-2)(5x-3)(5x+3)$

c)
$$2x^4 + 5x^3 - 8x^2 - 20x = x(2x^3 + 5x^2 - 8x - 20)$$

= $x [2x(x^2 - 4) + 5(x^2 - 4)]$
= $x(2x + 5)(x^2 - 4)$
= $x(2x + 5)(x + 2)(x - 2)$

Question 6 Page 140

a)
$$V(-1) = -2 + 7 - 2 - 3$$

 $= 0$
 $(x + 1)$ is a factor
 $1 = 2 - 7 - 2 - 3$
 $- = 2 - 5 - 3$
 $- = 2 - 5 - 3$
 $- = 2 - 5 - 3$
 $- = 2 - 5 - 3$
 $- = 2 - 5 - 3$
 $- = (x + 1)(2x^2 + 5x - 3)$
 $= (x + 1)(x + 3)(2x - 1)$
The dimensions are $(x + 1)$ m by $(x + 3)$ m by $(2x - 1)$ m.

b) (1 + 1) m by (1 + 3) m by (2 – 1) m, or 4 m by 2 m by 1 m

Chapter 2 Review

Question 7 Page 140

$$P(-3) = (-3)^{3} + 4(-3)^{2} - 2(-3)k + 3$$

$$0 = -27 + 36 + 6k + 3$$

$$6k = -12$$

$$k = -2$$

Chapter 2 Review

Question 8 Page 140

x = -4 or x = -2 or x = 3

Chapter 2 Review

Question 9 Page 140

a)
$$5(x^2 + 4)3(x^2 - 16) = 0$$

 $15(x^2 + 4)(x + 4)(x - 4) = 0$
 $x = -4$ or $x = 4$

b)
$$x = \frac{1 \pm \sqrt{(-1)^2 - 4(2)(-13)}}{2(2)}$$

 $x = \frac{1 - \sqrt{105}}{4} \text{ or } x = \frac{1 + \sqrt{105}}{4}$

Question 10 Page 140

Question 11 Page 140

The possible dimensions of the box are approximately 8.55 cm by 3.55 cm by 18.10 cm

Chapter 2 Review

Question 12 Page 140

B since the zeros are different.

Chapter 2 Review

Question 13 Page 140

- a) $y = kx(x-2+\sqrt{5})(x-2-\sqrt{5})$ $y = kx(x^2-2x-\sqrt{5}x-2x+4+2\sqrt{5}+\sqrt{5}x-2\sqrt{5}-5)$ $y = kx(x^2-4x-1)$ $y = k(x^3-4x^2-x)$
- b) let x = 2 and y = 20 $20 = k(2^3 - 4(2)^2 - 2)$ 20 = -10k k = -2 $y = -2(x^3 - 4x^2 - x)$

Question 14 Page 141

The zeros are -2 (order 2) and 1. $y = k(x+2)^2(x-1)$ Using the point (-1, 6) from the graph, substitute x = -1 and y = 6. $6 = k(-1+2)^2(-1-1)$ 6 = -2k k = -3 $y = -3(x+2)^2(x-1)$

Chapter 2 Review

Question 15 Page 141

a)

The values that satisfy the inequality $x^2 + 3x - 5 \ge 0$ are the values of x for which the graph is zero or positive (on or above the x-axis). From the graph, this occurs approximately when $x \le -4.2$ or $x \ge 1.2$.

The values that satisfy the inequality $2x^3 - 13x^2 + 17x + 12 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs when

$$-\frac{1}{2} < x < 3 \text{ or } x > 4$$

The values that satisfy the inequality $x^3 - 2x^2 - 5x + 2 < 0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs when approximately x < -1.7 or 0.4 < x < 3.3.

The values that satisfy the inequality $3x^3 + 4x^2 - 35x - 12 \le 0$ are the values of x for which the graph is zero and negative (on or below the x-axis). From the graph, this occurs when

$$x \le -4 \text{ or } -\frac{1}{3} \le x \le 3$$

The values that satisfy the inequality $-x^4 - 2x^3 + 4x^2 + 10x + 5 < 0$ are the values of x for which the graph is negative (below the x-axis). From the graph, this occurs approximately when x < -2.2 or x > 2.2.

Question 16 Page 141

The values that satisfy the inequality $-0.002t^4 + 0.104t^3 - 1.69t^2 + 8.5t - 6 > 0$ are the values of x for which the graph is positive (above the x-axis). From the graph, this occurs approximately when approximately between 0.8 s and 7.6 s and between 20 s and 23.6 s.

Chapter 2 Review

Question 17 Page 141

a) Consider all cases.

Case 1

$$5x + 4 < 0 \qquad x - 4 > 0$$

$$5x < -4 \qquad x > 4$$

$$x < -\frac{4}{5}$$

No solution since no x-values common to both inequalities.

Case 2

$$5x + 4 > 0$$
 $x - 4 < 0$
 $x > -\frac{4}{5}$ $x < 4$
 $-\frac{4}{5} < x < 4$ is a solution.

Combining the results of all the cases, the solution is $-\frac{4}{5} < x < 4$.

b) $(2x+3)(x-1)(3x-2) \ge 0$ Consider all cases.

Case 1		
2x + 3 > 0	x - 1 > 0	3x - 2 > 0
2x > -3	x > 1	3x > 2
$x > -\frac{3}{2}$	$x > \frac{2}{3}$	
	~	

x > 1 is a solution.

Case 2

2x + 3 > 0	x - 1 < 0	3x - 2 < 0
$x > -\frac{3}{2}$	<i>x</i> < 1	$x < \frac{2}{3}$
$-\frac{3}{2} < x < \frac{2}{3}$	is a solution.	

Case 3 2x + 3 < 0 x - 1 < 0 3x - 2 > 0 $x < -\frac{3}{2}$ x < 1 $x > \frac{2}{3}$

No solution since no x-values common to all three inequalities.

Case 4 2x + 3 < 0 x - 1 > 0 3x - 2 < 0 $x < -\frac{3}{2}$ x > 1 $x < \frac{2}{3}$

No solution since no x-values common to all three inequalities.

Combining the results of all the cases, the solution is $-\frac{3}{2} \le x \le \frac{2}{3}$ or $x \ge 1$.

$$\leftarrow$$
 _5 _4 _3 _2 _1 0 1 2 3 4 5

c) $(x^2 + 4x + 4)(x + 5)(x - 5) > 0$ Consider all cases.

Case 1 x+5>0 x-5>0 x>-5 x>5 x>5 is a solution. Case 2 x+5<0 x-5<0x<5

x < -5 is a solution.

Combining the results of all the cases, the solution is x < -5 or x > 5.

Chapter 2 Review

Question 18 Page 141

a) $12x^2 + 25x - 7 = (3x + 7)(4x - 1)$ $(3x + 7)(4x - 1) \ge 0$ Consider all cases.

Case 1

$$3x + 7 > 0$$

$$3x - 7$$

$$4x - 1 > 0$$

$$3x > -7$$

$$4x > 1$$

$$x > -\frac{7}{3}$$

$$x > \frac{1}{4}$$

$$x > \frac{1}{4}$$
 is a solution.
Case 2

$$3x + 7 < 0$$

$$4x - 1 < 0$$

$$x < -\frac{7}{3}$$

$$x < \frac{1}{4}$$

$$x < -\frac{7}{3}$$
 is a solution.

Combining the results of all the cases, the solution is $x \le -\frac{7}{3}$ or $x \ge \frac{1}{4}$.
b) $(x+4)(2x-3)(3x-1) \le 0$ Consider all cases.

Case 1

x + 4 < 0	2x - 3 < 0	3x - 1 < 0
x < -4	2x < 3	3x < 1
	$x < \frac{3}{2}$	$x < \frac{1}{3}$

x < -4 is a solution.

Case 2 x + 4 < 0 2x - 3 > 0 3x - 1 > 0x < -4 $x > \frac{3}{2}$ $x > \frac{1}{3}$

No solution since no x-values common to all three inequalities.

Case 3

$$x + 4 > 0$$
 $2x - 3 < 0$ $3x - 1 > 0$
 $x > -4$ $x < \frac{3}{2}$ $x > \frac{1}{3}$
 $\frac{1}{3} < x < \frac{3}{2}$ is a solution.
Case 4
 $x + 4 > 0$ $2x - 3 > 0$ $3x - 1 < 0$
 $x > -4$ $x > \frac{3}{2}$ $x < \frac{1}{3}$

No solution since no *x*-values common to all three inequalities.

Combining the results of all the cases, the solution is $x \le -4$ or $\frac{1}{3} \le x \le \frac{3}{2}$.

$$-3(x-4.3)(x+2.4)(x^2-1.5x+1.0) < 0$$

Consider all cases.

Case 1 x - 4.3 > 0 x + 2.4 > 0 x > 4.3 x > -2.4x > 4.3 is a solution.

Case 2 x - 4.3 < 0 x + 2.4 < 0 x < 4.3 x < -2.4x < -2.4 is a solution.

The solution is approximately x < -2.4 or x > 4.3.

Chapter Problem

Solutions for the Chapter Problem Wrap up are provided in the Teacher's Resource.

Chapter 2 Practice Test Question 1 Page 142

The correct solution is **C**.

$$P(-2) = 5(-2)^3 + 4(-2)^2 - 3(-2) + 2$$

= -16

Chapter 2 Practice Test

The correct solution is C.

 $P(2) = 2(2)^3 - 5(2)^2 - 9(2) + 18 \neq 0$

Chapter 2 Practice Test

Question 3 Page 142

Question 2 Page 142

The correct solution is **D**.

The only set to include ± 1 and $\pm \frac{1}{4}$

Chapter 2 Practice Test

Question 4 Page 142

a)

$$\frac{3 \begin{vmatrix} 1 & -4 & 3 & -7 \\ - & 3 & -21 & 72 \\ \hline x & 1 & -7 & 24 & -79 \end{vmatrix}}{x + 3} = x^2 - 7x + 24 - \frac{79}{x + 3}$$
b) $x \neq -3$
c) $(x + 3)(x^2 - 7x + 24) - 79$
d) $(x + 3)(x^2 - 7x + 24) - 79 = x^3 - 7x^2 + 24x + 3x^2 - 21x + 72 - 79 = x^3 - 4x^2 + 3x - 7$

Question 5 Page 142

a)
$$f(-2) = (-2)^4 + (-2)^3 k - 2(-2)^2 + 1$$

 $5 = 16 - 8k - 8 + 1$
 $8k = 9 - 5$
 $8k = 4$
 $k = \frac{1}{2}$
b) $f(-4) = (-4)^4 + (-4)^3 \left(\frac{1}{2}\right) - 2(-4)^2 + 1$
 $= 256 - 32 - 32 + 1$
 $= 193$
c) $\frac{x^3 - \frac{7}{2}x^2 + 12x - 48}{x + 4 \sqrt{x^4 + \frac{1}{2}x^3 - 2x^2 + 0x + 1}}$

$$\frac{x^{4} + 4x^{3}}{-\frac{7}{2}x^{3} - 2x^{2} + 0x + 1}$$

$$\frac{x^{4} + 4x^{3}}{-\frac{7}{2}x^{3} - 2x^{2}}$$

$$-\frac{7}{2}x^{3} - 14x^{2}}{12x^{2} + 0x}$$

$$\frac{12x^{2} + 48x}{-48x + 1}$$

$$-48x - 192$$
193

Question 6 Page 142

a)
$$P(-1) = -1 - 5 - 2 + 8$$

 $= 0$
 $(x + 1)$ is a factor.

 $\frac{1}{x + 1} = \frac{1 - 5 - 2 - 8}{1 - 6 - 8 - 8}$
 $\frac{-1 - 6 - 8 - 8}{-1 - 6 - 8 - 8}$
 $x^3 - 5x^2 + 2x + 8 = (x + 1)(x^2 - 6x + 8)$
 $= (x + 1)(x - 4)(x - 2)$

b) $P(-2) = (-2)^3 + 2(-2)^2 - 9(-2) - 18$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 5 - 2 - 8}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 5 - 2 - 8}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 5 - 2 - 9}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$
 $= 0$
 $(x + 2)$ is a factor.

 $\frac{1}{1 - 6 - 8 - 1}$

$$x^{3} + 2x^{2} - 9x - 18 = (x + 2)(x^{2} - 9)$$

= (x + 2)(x + 3)(x - 3)

c)

F1+ F2+ Tools Algebr	aCalcOther	FS F6 Pr9mI0Clear	τuρ 🗍
■ NewPro	ь		Done
•× ³ +5	× ² - 2·×	- 24 × :	= 2
x^3+5x^	2-2x-241	x=2	0
MAIN	RAD EXACT	FUNC	2/30

(x-2) is a factor.

F1+ F2+ Tools Algebra	F3+ F4+ Ca1c Other	F5 Pr9mi0	F6+ Clean Up
NewProb	2		Done
■× ³ +5·:	× ² – 2·×	- 24	×=2
			· (
■× ³ +5·:	× ² – 2·×	- 24	×= -3
			· (
x^3+5x^2	?-2x-241	×= -3	
MAIN	RAD EXACT	FUN	IC 3/30

(x+3) is a factor.

F1+ F2+	aCalcOtherP	F5	76 .
Tools Algebr		F3MIDC1e	an Up
■× ³ +5·	× ² - 2·×	- 24 ×	9 s= -3 (
•× ³ +5·	× ² - 2·×	- 24 ×	:= -4
X^3+5X^2	2-2×-241:	K= -4	4/30
MOIN	860 58661	FUNC	

(x+4) is a factor.

 $x^{3} + 5x^{2} - 2x - 24 = (x - 2)(x + 3)(x + 4)$

d)	
·	F1+ F2+ F3+ F4+ F5 F6+ ToolsAlgebraCalcOtherPrgmIOClean Up
	NewProb Done
	• Define $p(x) = 5 \cdot x^3 + 7 \cdot x^2 - \mathbf{b}$
	Done
	• P(1) 0
	MAIN RAD EXACT FUNC 3/30

(x-1) is a factor.

$$\frac{5x^{2} + 12x + 4}{x - 1)5x^{3} + 7x^{2} - 8x - 4}$$

$$\frac{5x^{3} - 5x^{2}}{12x^{2} - 8x}$$

$$\frac{12x^{2} - 12x}{4x - 4}$$

$$\frac{4x - 4}{0}$$

$$5x^{3} + 7x^{2} - 8x - 4 = (x - 1)(5x^{2} + 12x + 4)$$

$$= (x - 1)(x + 2)(5x + 2)$$

e)
$$P(-2) = (-2)^3 + 9(-2)^2 + 26(-2) + 24$$

= 0
 $(x + 2)$ is a factor.
$$\frac{2 | 1 \ 9 \ 26 \ 24}{- | 2 \ 14 \ 24} + \frac{2}{- | 1 \ 7 \ 12 \ 0}$$
 $x^3 + 9x^2 + 26x + 24 = (x + 2)(x^2 + 7x + 12)$
= $(x + 2)(x + 3)(x + 4)$

f)

F1+ F2+ Tools Algebry	aCalcOtherP	FS F6 r9ml0Clean	, Ib
■ NewProl	ь		Done
• 4: ³ + 28	3·× ² + 23	·×+6 >	< = -1
		-	0
MAIN	RAD EXACT	FUNC	2/30

(x+1) is a factor.

F1+ F2+ F3+ ToolsAl9ebraCal	F4+ Other Pi	F5 r9ml0(c1	F6+ ean Up
NewProb			Done
• ∢ × ⁴ + 13↔	(³ + 28	3·×2+	- 23 · × ▶
			6
■ 4 : ³ + 28·×	² + 23	·×+6	$ \times = -2$
			6
Mein Per	EVACT	FUNC	2/20

(x+2) is a factor.

F1+ F2+ Tools Algebi	raCa1cOtherPi	FS Fé r9ml0C1ea	i∓ n U⊳
- 4 2	0
■2·×*+	13·× ⁹ +2	8·×++	23·>≯ €
• 4: ³ + 2	8·× ² + 23	·×+6	×= -3
			6
MAIN	RAD EXACT	FUNC	4/30

(x+3) is a factor.

(2x+1) is a factor.

 $2x^4 + 13x^3 + 28x^2 + 23x + 6 = (x+1)(x+2)(x+3)(2x+1)$

Chapter 2 Practice Test

Question 7 Page 142

x = -5 or x = 3 or x = -2

Question 8 Page 142

Question 9 Page 142

- **a**) x = 2
- **b**) $(x+11)(x-11)(x^2+16) = 0$ x = -11 or x = 11
- c) $2(x^2 2x + 3)(x^2 25) = 0$ $2(x^2 - 2x + 3)(x - 5)(x + 5) = 0$ x = 5 or x = -5
- d) $3(x^2 9)(x 5)(x + 2) = 0$ 3(x - 3)(x + 3)(x - 5)(x + 2) = 0x = 3 or x = -3 or x = 5 or x = -2

Chapter 2 Practice Test

- a) $(x+1)^2(x+2) = 0$ x = -1 or x = -2
- **b)** (x-3)(x-1)(x+4) = 0x = 3 or x = 1 or x = -4
- c) (2x-3)(4x-7)(4x+7) = 0 $x = \frac{3}{2} \text{ or } x = \frac{7}{4} \text{ or } x = -\frac{7}{4}$ x = 1.5 or x = 1.75 or x = -1.75

d)
$$x(3x-2)(3x+2)(5x-3) = 0$$

 $x = 0 \text{ or } x = \frac{2}{3} \text{ or } x = -\frac{2}{3} \text{ or } x = \frac{3}{5}$

Chapter 2 Practice Test

Question 10 Page 142

Answers may vary. A sample solution is shown.

- a) All involve polynomials; the equation is a statement about two equivalent expressions (e.g., $x^2 x = x^7 + 8$), the inequality is a statement about two unequivalent expressions (e.g., $x^2 x < x^7 + 8$), and the function is a relationship giving each element in the domain one corresponding value in the range (e.g., $y = x^7 + 8$).
- **b)** When an polynomial equation such as $x^2 x$ is equal to zero, the roots of the equation are the same as the zeros of the function $y = x^2 x$ and the *x*-intercepts of the graph of $x^2 x$.

a)
$$y = kx(x+3)(2x+3)(x-2)$$

Using the point (-2, 4), substitute $x = -2$ and $y = 4$ and solve for k.
 $4 = k(-2)(-2+3)(2(-2)+3)(-2-2)$
 $4 = -8k$
 $k = -\frac{1}{2}$
 $y = -\frac{1}{2}x(x+3)(2x+3)(x-2)$

b)
$$x < -3, -\frac{3}{2} < x < 0, x > 2$$

Chapter 2 Practice Test

Question 12 Page 143

a)
$$y = k(x-5)^2(x+2+\sqrt{6})(x+2-\sqrt{6})$$

 $y = k(x^2-10x+25)(x^2+2x-\sqrt{6}x+2x+4-2\sqrt{6}+\sqrt{6}x+2\sqrt{6}-6)$
 $y = k(x^2-10x+25)(x^2+4x-2)$
 $y = k(x^4+4x^3-2x^2-10x^3-40x^2+20x+25x^2+100x-50)$
 $y = k(x^4-6x^3-17x^2+120x-50)$

b) Substitute x = 0 and y = 20 and solve for k. $20 = k \left(0^4 - 6(0)^3 - 17(0)^2 + 120(0) - 50 \right)$ 20 = -50k $k = -\frac{2}{5}$ $y = -\frac{2}{5} (x^4 - 6x^3 - 17x^2 + 120x - 50)$

Question 13 Page 143

a) height = xwidth = (20 - 2x)length = 18 - xV(x) = x(20 - 2x)(18 - x)**b)** V(x) = x(20-2x)(18-x) $450 = x(360 - 56x + 2x^2)$ $0 = x(360 - 56x + 2x^2) - 450$ $0 = 2x^3 - 56x^2 + 360x - 450$ Zero X=7.0914194 Y=0 Zero X=1.6472647 Y=0 X=19.261316 Y=8E-10 height $\doteq 1.6$ height \doteq 7.1 height \doteq 19.3 width \doteq 16.7 width $\doteq 5.8$ width $\doteq -18.5$ length \doteq 16.4 length $\doteq 10.9$ length $\doteq -1.3$ Disregard negative dimensions.

The possible dimensions of the box are approximately 16.7 cm by 16.4 cm by 1.6 cm or 5.8 cm by 10.9 cm by 7.1 cm

- c) V(x) = kx(20 2x)(18 x)
- d) Answers may vary. A sample solution is shown.

Approximately $x \le -0.9$ or $1.4 \le x \le 7.4$.

b) $-x^4 + 3x^3 + 9x^2 - 5x - 5 > 0$

Approximately -2.0 < x < -0.6 or 0.9 < x < 4.7.

 $-1.5 \le x \le -1$ or approximately $x \le -1.7$ or $x \ge 1.7$.

Question 16 Page 143

a) (3x-4)(3x+4) < 0Consider all cases.

Case 1

$$3x-4 > 0$$
 $3x + 4 < 0$
 $3x > 4$ $3x < -4$
 $x > \frac{4}{3}$ $x < -\frac{4}{3}$

No solution since no x-values common to both inequalities.

Case 2

$$3x-4 < 0$$
 $3x+4 > 0$
 $x < \frac{4}{3}$ $x > -\frac{4}{3}$
 $-\frac{4}{3} < x < \frac{4}{3}$ is a solution.

Combining the results of all the cases, the solution is $-\frac{4}{3} < x < \frac{4}{3}$.

b)
$$-x(x^2 - 6x + 9) > 0$$

 $-x(x - 3)^2 > 0$
 $x(x - 3)^2 < 0$

x < 0 x < 3The solution is x < 0. c) $2x(x^2-9)+5(x^2-9) \le 0$ $(2x+5)(x-3)(x+3) \le 0$ Consider all cases.

Case 1

$$2x + 5 < 0$$
 $x - 3 < 0$ $x + 3 < 0$
 $x < -\frac{5}{2}$ $x < 3$ $x < -3$

x < 3 is a solution.

Case 2 2x + 5 < 0 x - 3 > 0 x + 3 > 0 $x < -\frac{5}{2}$ x > 3 x > -3

No solution since no x-values common to all three inequalities.

Case 3 2x + 5 > 0 x - 3 > 0 x + 3 < 0 $x > -\frac{5}{2}$ x > 3 x < -3

No solution since no x-values common to all three inequalities.

Case 4 2x + 5 > 0 x - 3 < 0 x + 3 > 0 $x > -\frac{5}{2}$ x < 3 x > -3 $-\frac{5}{2} < x < 3$ is a solution.

Combining the results of all the cases, the solution is $x \le -3$ or $-\frac{5}{2} \le x \le 3$.

d) $(x-2)(2x+1)(x+1)(x+3) \ge 0$ Consider all cases.

Case 1

$$x \ge 2 \qquad x \ge -\frac{1}{2} \qquad x \ge -1 \qquad x \ge -3$$

x \ge 2 is a solution.

Case 2

 $x < 2 \qquad x < -\frac{1}{2} \qquad x > -1 \qquad x > -3$ $-1 < x < -\frac{1}{2} \text{ is a solution.}$

Case 3

$$x > 2$$
 $x > -\frac{1}{2}$ $x < -1$ $x < -3$

No solution since no x-values common to all four inequalities.

Case 4

$$x < 2$$
 $x > -\frac{1}{2}$ $x < -1$ $x > -3$

No solution since no x-values common to all four inequalities.

Case 5

$$x < 2$$
 $x > -\frac{1}{2}$ $x > -1$ $x < -3$

No solution since no x-values common to all four inequalities.

Case 6

$$x > 2$$
 $x < -\frac{1}{2}$ $x < -1$ $x > -3$

No solution since no x-values common to all four inequalities.

Case 7

x > 2 $x < -\frac{1}{2}$ x > -1 x < -3

No solution since no x-values common to all four inequalities.

Case 8

$$x < 2$$
 $x < -\frac{1}{2}$ $x < -1$ $x < -3$
 $x < -3$ is a solution.

Combining the results of all the cases, the solution is $x \le -3$ or $-1 \le x \le -\frac{1}{2}$ or $x \ge 2$.

- a) V(x) = x(32-2x)(40-2x)
- **b)** i) V(x) = 2x(32 2x)(40 2x)

ii)
$$V(x) = \frac{1}{2}x(32 - 2x)(40 - 2x)$$

c) family of functions

Y=0.

082763 Y=0

The values of x that will result in boxes of a volume greater than 2016 are approximately 2 < x < 10.9 or x > 23.1.