SPH4U 8.1 Magnets and Electromagnets

1. Permanent magnets

Magnetic field:	
magnetic field lines	
magnetic poles	
Earth's magnetic field:	
causes	
compass	
cosmic rays	

2. Electromagnetism

Principle of electromagnetism:
Right-hand rule for a straight conductor:

Right-Hand Rule for a Straight Conductor

If your right thumb is pointing in the direction of conventional current, and you curl your fingers forward, your curled fingers point in the direction of the magnetic field lines.

Current loop:

Solenoid:

Right-hand rule for a
solenoid:

Right-Hand Rule for a Solenoid

If you coil the fingers of your right hand around a solenoid in the direction of the conventional current, your thumb points in the direction of the magnetic field lines in the centre of the coil.

Electromagnet:

factors
applications

SPH4U 8.2 Magnetic Force on Moving Charges

3. Magnetic force

```
Magnetic field
strength:
Magnetic force:
    equation
    direction
```

Right-Hand Rule for a Moving Charge in a Magnetic Field
If you point your right thumb in the direction of the velocity of the charge (\vec{V}), and your straight fingers in the direction of the magnetic field (\vec{B}), then your palm will point in the direction of the resulting magnetic force $\left(\vec{F}_{\mathrm{M}}\right)$.

$\stackrel{\rightharpoonup}{B}$
The electron shown moves at a sped of $54 \mathrm{~m} / \mathrm{s}$ through a magnetic field with a strength of 1.2 T. The angle between the electron's velocity and the magnetic field is 90°. Assume the electron's charge is $-e=-1.60 \times 10^{-19} \mathrm{C}$.
a. What is the magnitude of the magnetic force on the electron?
b. Use the right-hand rule to determine the direction of the magnetic force.
c. Calculate the gravitational force on the electron $\left(m=9.11 \times 10^{-31} \mathrm{~kg}\right)$.
d. What is the ratio of gravitational force to magnetic force on the electron?

A proton is moving along the x-axis at a speed of $78 \mathrm{~m} / \mathrm{s}$. It enters a magnetic field of strength 2.7 T . The angle between the proton's velocity and the magnetic field is 38°. The mass of a proton is $1.67 \times 10^{-27} \mathrm{~kg}$.
a. Calculate the initial magnitude and direction of the magnetic force on the proton.

b. Determine the proton's initial acceleration.

During a thunderstorm, positive charge accumulates near the top of a cloud, and negative charge accumulates near the bottom. When the charge buildup is strong enough, negative charge moves rapidly from the cloud to the ground, as a lightning strike. Assume the charge is moving perpendicular to the ground, and Earth's magnetic field is horizontal, directed north. Determine the direction of the deflection of this charge by Earth's magnetic field.

SPH4U 8.3 Magnetic Force on a Current-Carrying Conductor

4. Magnetic force and current

Electric current:	
single charge	
wire with current	
direction	

A piece of wire 45.2 cm long has a current of 12 A . The wire moves through a uniform magnetic field with a strength of 0.30 T . Calculate the magnitude of the magnetic force on the wire when the angle between the magnetic field and the wire is:
a. 0°

b. 45°
c. 90°

Two electrical poles support a current-carrying wire. The mass of a 2.5 m segment of the wire is 0.44 kg , and a 15 A current travels through it. The convential current is due east, horizontal to Earth's surface. Earth's magnetic
 field is $57 \mu \mathrm{~T}$ and is oriented due north, horizontal to Earth's surface.
a. Determine the magnitude and direction of the magnetic force on the 2.5 m segment of wire.
b. Calculate the gravitational force on the 2.5 m segment of wire.

5. Applications

Loudspeakers:

SPH4U 8.4 Motion of Charged Particles in Magnetic Fields

6. Uniform circular motion of charges

Moving parallel to $\vec{B}:$	
Moving perpendicular to $\vec{B}:$	
result	
centripetal force	
equation	

\qquad
\qquad
$+q \circ \longrightarrow \vec{v}$
Moving
\qquad

An electron ($m=9.11 \times 10^{-31} \mathrm{~kg}$) starts from rest. A horizontally directed electric field accelerates the electron through a potential difference of 37 V . The electron then leaves the electric field and moves into a magnetic field with strength 0.26 T , directed into the page.

a. Determine the speed of the electron at the moment it enters the magnetic field.
b. Determine the magnitude and direction of the magnetic force on the electron.
c. Determine the radius of the electron's circular path.

7. Mass spectrometer

Mass
spectrometer:

A researcher using a mass spectrometer observes a particle travelling at $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in a circular path of radius 8.2 cm . The spectrometer's magnetic field is perpendicular to the particle's path and has a magnitude of 0.41 T .
a. Calculate the mass-to-charge ratio of the particle.
b. Identify the particle using the table provided.

Isotope	$\boldsymbol{m}(\mathrm{kg})$	$\boldsymbol{q}(\mathbf{C})$	$\frac{\boldsymbol{m}}{\boldsymbol{q}}(\mathbf{k g} / \mathbf{C})$
hydrogen	1.67×10^{-27}	1.60×10^{-19}	1.04×10^{-8}
deuterium	3.35×10^{-27}	1.60×10^{-19}	2.09×10^{-8}
tritium	5.01×10^{-27}	1.60×10^{-19}	3.13×10^{-8}

A researcher uses a mass spectrometer in a carbon dating experiment. The incoming ions are a mixture of ${ }^{12} \mathrm{C}^{+}$and ${ }^{14} \mathrm{C}^{+}$, and they have speed $v=1.0 \times 10^{5}$ m / s. The strength of the magnetic field is 0.10 T . The mass of an electron is 9.11 x $10^{-31} \mathrm{~kg}$, and the mass of protons and neutrons is $1.67 \times 10^{-27} \mathrm{~kg}$.

The researcher first positions the ion detector to determine the value of r for ${ }^{12} \mathrm{C}^{+}$, then moves it to determine the value of r for ${ }^{14} \mathrm{C}^{+}$. How far must the detector move between detecting the two isotopes?

