
SPH4U 10.1 Interference in Thin Films

1. Thin films

Thin film:

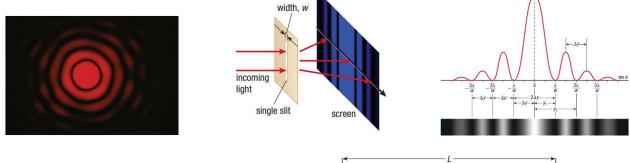
Reflection at a media boundary:	
Phase change at a reflection:	
$n_1 < n_2$	
$n_1 > n_2$	
importance	

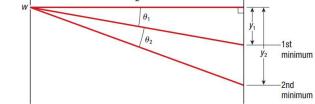
Interference:	
path difference	
Same phase:	
constructive interference	
destructive interference	
Opposite phase:	

2. Determining interference effects

Consider a soap film that is the thinnest film that will produce a bright blue light when illuminated with white light. The index of refraction of the soap film is 1.35, and the blue light is monochromatic with wavelength 411 nm.

a. Calculate the thickness of the film if the soap covers a piece of crown glass with index of refraction 1.52.


b. Suppose the reflections occur instead from a soap film on water with index of refraction 1.33. Determine the thickness of the film on water that will produce the same blue colour of reflected light.


In solar cells, incoming light passes through an anti-reflective coating to increase the efficiency of the cell. The coating has $n_1 = 1.45$ and the material below has $n_2 = 3.50$. Determine the thickness of the anti-reflective coating that will minimize the reflection of light with a wavelength of 7.00×10^{-7} m.

SPH4U 10.2 Single-Slit Diffraction

3. Single-slit diffraction

Single-slit diffraction:	
constructive	
interference	
destructive	
interference	
dark fringe	
location	
central	
maximum	

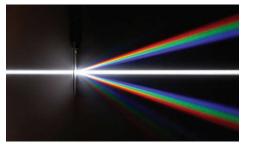
4. Analyzing single-slit interference

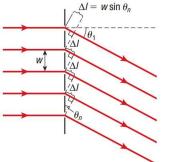
Light with a wavelength of 5.40×10^2 nm is incident on a slit of width 11 µm and produces a diffraction pattern on a screen located 80.0 cm behind the slit. Calculate the distance of the first dark fringe from the central maximum on the screen.

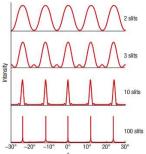
Light with a wavelength of 670 nm is incident on a slit of width 12 μm and produces a diffraction pattern on a screen that is 30.0 cm behind the slit.

a. Calculate the angular width and the absolute width, in centimetres, of the central maximum.

b. Calculate the distance between the first and second minima.


c. Determine the distance between the second and third maxima. Compare this answer to your answer in (b). Does this answer make sense? Explain why or why not.


Homework: pg. 519 #1, 3, 5-8


SPH4U 10.3 The Diffraction Grating

5. Diffraction gratings

Diffraction grating:		
2 slits		
more slits		
equation		
	$\Delta I = w$	$r \sin \theta_n$

Light with a wavelength of 540 nm is incident on a diffraction grating that has 8500 lines/cm. Calculate the angles of the maxima.

Light emitted by a particular source is incident on a diffraction grating with 9000 lines/cm and produces a first-order maximum at 32.0°. Determine the wavelength of the light.

Homework: pg. 525 #2-5, 8

SPH4U 10.4 Electromagnetic Radiation

6. Electromagnetic radiation

Electromagnetic radiation:	
Electromagnetic spectrum:	
equation	

Microwaves with a wavelength of 1.5 cm carry television signals using a sequence of relay towers.

 $\mathbf{r}_{requerry}(t_{2})$

- a. Determine the frequency of the microwave.
- b. How much time does it take for a microwave signal to travel 5.0 x 10³ km across Canada from St. John's, Newfoundland, to Victoria, British Columbia?

The energy of an electromagnetic wave is proportional to its frequency. An X-ray with a wavelength of 0.025 nm transfers its energy to an electron to change its state. How does the energy of the electron transition compare with that of 540 nm visible light?

SPH4U 10.5 Polarization of Light

7. Polarized light

7. I Old IZed IIg	polarizer 🖉 axis of
Polarized light:	$\vec{\epsilon}$ polarization $\vec{\epsilon}$ direction of
Polarization by selective absorption:	unpolarized light unpolarized light
Malus' Law	z polarizer analyzer
unpolarised input light	
Polarization by reflection:	Brewster's angle incident ray (unpolarized)
Brewster's angle	refracted ray (slightly polarized)
Brewster's law	