SPH3U 9.1 Interference of Waves

1. Wave interference

Interference:

Principle of superposition:

Constructive interference:

These two waveforms are about to interfere with each other. Draw the resultant waveform.

SPH3U 9.2 Waves at Media Boundaries

2. Standing waves

Standing wave:
cause
nodes
antinodes

3. Standing waves - $\mathbf{2}$ fixed ends

Fixed end:

2 fixed ends

Symbol	Number of nodes between ends	Diagram	Harmonic (n)	Overtone
f_{0}	0		first	fundamental
f_{1}	1		second	first
f_{2}	2		third	second
t_{3}	3		fourth	third

4. Standing waves $\mathbf{-} \mathbf{2}$ free ends

Free end:

2 free ends

5. Standing waves - fixed-free ends

Fixed-free ends:

6. Equations

2 fixed or 2 free:

Fixed-free:
The speed of a wave on a string with a fixed end and a free end is $350 \mathrm{~m} / \mathrm{s}$. The frequency of the wave is 200.0 Hz . What length of string is necessary to produce a standing wave with the first harmonic?

The sixth harmonic of a 65 cm guitar string is heard. If the speed of sound in the string is $206 \mathrm{~m} / \mathrm{s}$, what is the frequency of the standing wave?

Homework: page 426: \#5-7

SPH3U 9.3 Beats

7. Beats

Beat:

John is tuning his guitar. His string produces a frequency of 442 Hz , and his tuner produces a frequency of 440 Hz . What beat frequency does John hear?

SPH3U 9.4 Damping and Resonance

8. Damping and resonance

SPH3U 9.5 The Doppler Effect

9. The Doppler Effect

The Doppler Effect:	
equation	
$\mathrm{V}_{\text {source }}$	

Suppose a fire truck is moving toward a stationary observer at $25.0 \mathrm{~m} / \mathrm{s}$. The frequency of the siren on the fire truck is 800.0 Hz . Calculate (a) the frequency detected by the observer as the fire truck approaches and (b) the frequency detected by the observer after the truck passes by. The speed of sound in this case is $342 \mathrm{~m} / \mathrm{s}$.

