SPH3U 9.1 Interference of Waves

1. Wave interference

These two waveforms are about to interfere with each other. Draw the resultant waveform.

Homework: page 419: #1-2

SPH3U 9.2 Waves at Media Boundaries

2. Standing waves

Standing wave:	nodes
cause	antinodes
nodes	
antinodes	

3. Standing waves – 2 fixed ends

Fixed end:	
2 fixed ends	

Symbol	Number of nodes between ends	Diagram	Harmonic (n)	Overtone
f ₀	0	f_0 $n = 1$ $L_1 = \frac{1}{2}\lambda$	first	fundamental
f ₁	1	f_1 node $n = 2$ antinode $L_2 = \lambda$	second	first
f ₂	2	f_2 node node $n = 3$ antinode $L_3 = \frac{3}{2} \lambda$	third	second
f ₃	3	f_3 node node node f_3 $n = 4$ antinode $L_4 = 2 \lambda$	fourth	third

4. Standing waves – 2 free ends

5. Standing waves – fixed-free ends

6. Equations

2 fixed or 2 free:	
Fixed-free:	

The speed of a wave on a string with a fixed end and a free end is 350 m/s. The frequency of the wave is 200.0 Hz. What length of string is necessary to produce a standing wave with the first harmonic?

The sixth harmonic of a 65 cm guitar string is heard. If the speed of sound in the string is 206 m/s, what is the frequency of the standing wave?

Homework: page 426: #5-7

SPH3U 9.3 Beats

7. Beats

Beat:	
Beat frequency:	
equation	

John is tuning his guitar. His string produces a frequency of 442 Hz, and his tuner produces a frequency of 440 Hz. What beat frequency does John hear?

Homework: page 429: #2-3

SPH3U 9.4 Damping and Resonance

8. Damping and resonance

Damping:	0.5 - 900 - 900 - 900 - 900 -	
Resonant frequency:	-0.5 - -1.0	5 10 15 20 25 30
	(a)	Time
resonance	1.0 0.5 -	
standing waves	0.0	5 10 15 20 25 30
	(b)	Time
Vibrating structures:		

Homework: page 432: #1-2

SPH3U 9.5 The Doppler Effect

9. The Doppler Effect

Suppose a fire truck is moving toward a stationary observer at 25.0 m/s. The frequency of the siren on the fire truck is 800.0 Hz. Calculate (a) the frequency detected by the observer as the fire truck approaches and (b) the frequency detected by the observer after the truck passes by. The speed of sound in this case is 342 m/s.