SPH3U 8.1 Vibrations

1. Vibrations and mechanical waves

Vibration:	
equilibrium	
Mechanical wave:	
medium	
net motion	

2. Particle behaviour in different media

Waves in solids:	(a)
elastic material	
Waves in fluids:	(b)

SPH3U 8.2 Types of Mechanical Waves

3. Types of waves

Transverse wave:	$\bar{\nearrow}$		
Longitudinal wave:			
waves in gases	higher pressure compression	lower pressure	higher pressure compression
sound		wind	
complex wave motion		C	

SPH3U 8.3 Wave Characteristics

4. Geometric wave characteristics

Amplitude:	
Wavelength:	
Phase:	
Phase shift:	

5. Geometric wave characteristics

Period:	
Frequency:	
equation	
Wave speed:	
equation	
Simple harmo motion (SHM)	nic):

Homework: page 387: #1, 3-4

SPH3U 8.4 Determining Wave Speed

6. The universal wave equation

Universal wave		
equation:		

A harp string supports a wave with a wavelength of 2.3 m and a frequency of 220.0 Hz. Calculate its wave speed.

A trumpet produces a sound wave that is observed travelling at 350 m/s with a frequency of 1046.50 Hz. Calculate the wavelength of the sound wave.

7. Factors that affect wave speed

Rigidity:	
Temperature:	
Linear density:	
equation	
Speed of a wave on a string:	

On your class wave machine, you have a string of mass 350 g and length 2.3 m. You would like to send a wave along this string at a speed of 50.0 m/s. What must the tension of the string be?

SPH3U 8.5 Properties of Sound Waves

1. Categories of sound waves

Audible sound waves:	
infrasonic	
ultrasonic	

2. The speed of sound through air

|--|

The temperature outside is 23 °C. What is the speed of sound in air at this temperature?

If the speed of sound is measured to be 318 m/s, what is the current air temperature?

3. Mach number

Mach number:	
equation	

An aircraft is flying at 905 km/h in air at the temperature -50.0 °C. Calculate the Mach number associated with this speed.

4. Sound intensity

Sound intensity:	
sound level	

Type of sound	Typical sound intensity (W/m²)	Sound level (dB)	Type of sound	Typical sound intensity (W/m²)	Sound level (dB)
threshold of human hearing	1 × 10 ⁻¹²	0	jet flyover (at 300 m)	1 × 10 ⁻²	100
normal breathing (at 1 m)	1 × 10 ⁻¹¹	10	rock band	0.1	110
typical whisper (at 1 m)	1 × 10 ⁻¹⁰	20	jet aircraft engine (at 80 m), power saw	1.0	120
empty classroom	1 × 10 ⁻⁹	30	threshold of pain	10	130
computer (at 1 m)	1 × 10 ⁻⁸	40	military jet taking off	100	140
library	1 × 10 ⁻⁷	50	space shuttle (at 180 m)	316	145
alarm clock (at 1 m)	1 × 10 ⁻⁶	60	sound cannon (at 1 m)	1 000	150
vacuum cleaner (at 2 m)	1 × 10 ⁻⁵	70	1 tonne TNT (at 30 m) (buildings 50 % destroyed)	380 000	175.8
diesel locomotive (at 30 m)	1×10^{-4}	<mark>80</mark>	tornado	1 × 10 ¹²	240
motorcycle (at 10 m)	1×10^{-3}	90	atomic bomb	1 × 10 ¹³	250

Loudness and distance:

Distance (m)	Sound level (dB)	
1	120	
10	100	
50	86	
100	80	
200	74	
500	66	
1 000	60	
2 000	54	
5 000	46	
10 000	40	

Sound safety:

Continuous dB	Permissible exposure time	
85	8 h	
88	4 h	
91	2 h	
94	1 h	
97	30 min	
100	15 min	
103	7.5 min	
106	3.75 min (<4 min)	
109	1.88 min (<2 min)	
112	0.94 min (~1 min)	
115	0.47 min (~30 s)	

page 397 #2-3, 9-10

SPH3U 9.1 Interference of Waves

8. Wave interference

These two waveforms are about to interfere with each other. Draw the resultant waveform.

Homework: page 419: #1-2

SPH3U 9.2 Waves at Media Boundaries

9. Standing waves

Standing wave:	nodes
cause	antinodes
nodes	
antinodes	

10.Standing waves – 2 fixed ends

Fixed end:	
2 fixed ends	

Symbol	Number of nodes between ends	Diagram	Harmonic (n)	Overtone
f ₀	0	f_0 $n = 1$ $L_1 = \frac{1}{2} \lambda$	first	fundamental
<i>t</i> ₁	1	f_1 node $n = 2$ antinode $L_2 = \lambda$	second	first
f ₂	2	f_2 node node $n = 3$ antinode $L_3 = \frac{3}{2} \lambda$	third	second
f ₃	3	f_3 node node node $n = 4$ antinode $L_4 = 2 \lambda$	fourth	third

11. Standing waves - 2 free ends

12. Standing waves – fixed-free ends

13.Equations

2 fixed or 2 free:	
Fixed-free:	

The speed of a wave on a string with a fixed end and a free end is 350 m/s. The frequency of the wave is 200.0 Hz. What length of string is necessary to produce a standing wave with the first harmonic?

The sixth harmonic of a 65 cm guitar string is heard. If the speed of sound in the string is 206 m/s, what is the frequency of the standing wave?

Homework: page 426: #5-7

SPH3U 9.3 Beats

14.Beats

Beat:	
Beat frequency:	
equation	
1	

John is tuning his guitar. His string produces a frequency of 442 Hz, and his tuner produces a frequency of 440 Hz. What beat frequency does John hear?

Homework: page 429: #2-3

SPH3U 9.4 Damping and Resonance

15. Damping and resonance

Damping:	1.0 0.5 -	
Resonant frequency:	-0.5 - -1.0	5 10 15 20 25 30
	(a)	Time
resonance	1.0	Λ
standing waves	0.00.5	5 10 15 20 25 30
	(b)	Time
Vibrating structures:		

Homework: page 432: #1-2

SPH3U 9.5 The Doppler Effect

16. The Doppler Effect

Suppose a fire truck is moving toward a stationary observer at 25.0 m/s. The frequency of the siren on the fire truck is 800.0 Hz. Calculate (a) the frequency detected by the observer as the fire truck approaches and (b) the frequency detected by the observer after the truck passes by. The speed of sound in this case is 342 m/s.

Homework: page 435: #4-5