SPH3U 8.1 Vibrations

1. Vibrations and mechanical waves

Vibration:	
equilibrium	
Mechanical wave:	
medium	
net motion	

2. Particle behaviour in different media

Waves in solids:
elastic
material
Waves in
fluids:

Homework: page 380: \#1-4

SPH3U 8.2 Types of Mechanical Waves

3. Types of waves

SPH3U 8.3 Wave Characteristics

4. Geometric wave characteristics

Amplitude:
Wavelength:
Phase:
Phase shift:

5. Geometric wave characteristics

Period:
Frequency:
equation
Wave speed: equation

Simple harmonic motion (SHM):

SPH3U 8.4 Determining Wave Speed

6. The universal wave equation

```
Universal wave equation:
```

A harp string supports a wave with a wavelength of 2.3 m and a frequency of 220.0 Hz . Calculate its wave speed.

A trumpet produces a sound wave that is observed travelling at $350 \mathrm{~m} / \mathrm{s}$ with a frequency of 1046.50 Hz . Calculate the wavelength of the sound wave.

7. Factors that affect wave speed

Rigidity:	
Temperature:	
Linear density:	
equation	
Speed of a wave on a string:	

On your class wave machine, you have a string of mass 350 g and length 2.3 m . You would like to send a wave along this string at a speed of $50.0 \mathrm{~m} / \mathrm{s}$. What must the tension of the string be?

SPH3U 8.5 Properties of Sound Waves

1. Categories of sound waves

```
Audible sound
waves:
    infrasonic
    ultrasonic
```


2. The speed of sound through air

Equation:

The temperature outside is $23^{\circ} \mathrm{C}$. What is the speed of sound in air at this temperature?

If the speed of sound is measured to be $318 \mathrm{~m} / \mathrm{s}$, what is the current air temperature?

3. Mach number

Mach number: equation

An aircraft is flying at $905 \mathrm{~km} / \mathrm{h}$ in air at the temperature $-50.0^{\circ} \mathrm{C}$. Calculate the Mach number associated with this speed.

4. Sound intensity

Sound intensity:
sound level

Type of sound	Typical sound intensity ($\mathrm{W} / \mathrm{m}^{2}$)	Sound level (dB)	Type of sound	Typical sound intensity ($\mathrm{W} / \mathrm{m}^{2}$)	Sound level (dB)
threshold of human hearing	1×10^{-12}	0	jet flyover (at 300 m)	1×10^{-2}	100
normal breathing (at 1 m)	1×10^{-11}	10	rock band	0.1	110
typical whisper (at 1 m)	1×10^{-10}	20	jet aircraft engine (at 80 m), power saw	1.0	120
empty classroom	1×10^{-9}	30	threshold of pain	10	130
computer (at 1 m)	1×10^{-8}	40	military jet taking off	100	140
library	1×10^{-7}	50	space shuttle (at 180 m)	316	145
alarm clock (at 1 m)	1×10^{-6}	60	sound cannon (at 1 m)	1000	150
vacuum cleaner (at 2 m)	1×10^{-5}	70	1 tonne TNT (at 30 m) (buildings 50% destroyed)	380000	175.8
diesel locomotive (at 30 m)	1×10^{-4}	80	tornado	1×10^{12}	240
motorcycle (at 10 m)	1×10^{-3}	90	atomic bomb	1×10^{13}	250

Loudness and distance:

Distance (m)	Sound level (dB)
1	120
10	100
50	86
100	80
200	74
500	66
1000	60
2000	54
5000	46
10000	40

Sound safety:

Continuous dB	Permissible exposure time
85	8 h
88	4 h
91	2 h
94	1 h
97	30 min
100	15 min
103	7.5 min
106	$3.75 \mathrm{~min}(<4 \mathrm{~min})$
109	$1.88 \mathrm{~min}(<2 \mathrm{~min})$
112	$0.94 \mathrm{~min}(\sim 1 \mathrm{~min})$
115	$0.47 \mathrm{~min}(\sim 30 \mathrm{~s})$

SPH3U 9.1 Interference of Waves

8. Wave interference

Interference: $\quad \square$

Principle of superposition:

Constructive interference:

These two waveforms are about to interfere with each other. Draw the resultant waveform.

SPH3U 9.2 Waves at Media Boundaries

9. Standing waves

Standing wave:
cause
nodes
antinodes

10.Standing waves - 2 fixed ends

Fixed end:

2 fixed ends

Symbol	Number of nodes between ends	Diagram	Harmonic (n)	Overtone
f_{0}	0		first	fundamental
f_{1}	1		second	first
f_{2}	2		third	second
f_{3}	3		fourth	third

11.Standing waves - 2 free ends

Free end:

2 free ends

12.Standing waves - fixed-free ends

Fixed-free ends:

13. Equations

2 fixed or 2 free:
Fixed-free:
The speed of a wave on a string with a fixed end and a free end is $350 \mathrm{~m} / \mathrm{s}$. The frequency of the wave is 200.0 Hz . What length of string is necessary to produce a standing wave with the first harmonic?

The sixth harmonic of a 65 cm guitar string is heard. If the speed of sound in the string is $206 \mathrm{~m} / \mathrm{s}$, what is the frequency of the standing wave?

Homework: page 426: \#5-7

SPH3U 9.3 Beats

14.Beats

Beat:

John is tuning his guitar. His string produces a frequency of 442 Hz , and his tuner produces a frequency of 440 Hz . What beat frequency does John hear?

SPH3U 9.4 Damping and Resonance

15.Damping and resonance

SPH3U 9.5 The Doppler Effect

16.The Doppler Effect

The Doppler Effect:	
equation	
vsource	

Suppose a fire truck is moving toward a stationary observer at $25.0 \mathrm{~m} / \mathrm{s}$. The frequency of the siren on the fire truck is 800.0 Hz . Calculate (a) the frequency detected by the observer as the fire truck approaches and (b) the frequency detected by the observer after the truck passes by. The speed of sound in this case is $342 \mathrm{~m} / \mathrm{s}$.

