SPH3U 13.1 Electromagnetic Induction

1. Discovery

Induction:	
Chapter 12:	
Chapter 13:	
stationary magnet	
moving magnet	
Law of electromagnetic induction:	

Faraday's
ring:
-

2. Factors affecting induction

Coiled conductor:	
Number of loops:	
Change in magnetic field:	
Magnetic field strength:	

3. Applications of electromagnetic induction

Induction cooking:	
Metal detectors:	
Induction chargers:	

Homework: page 591: #2-3

SPH3U 13.2 Lenz's Law

1. Direction of induced current

Lenz's question:

Newton's 3rd law:	
applied to induced currents	
Lenz's Law:	

2. Drop-tower rides

Drop-tower rides:	
brakes	
solution	

Homework: page 594: #1-3

SPH3U 13.3 Alternating Current

3. Alternating current

Continuous current:	
solution	
Alternating current:	
DC vs. AC:	
Canada's electricity:	
RMS voltage:	

Homework: page 598: #1-2, 5

SPH3U 13.4 Electricity Generation

4. The AC generator

5. The DC generator

Design:

Homework: page 604: #2-3

SPH3U 13.5 Transformers

6. How transformers work

A step-down transformer used in an adapter for a laptop has a primary voltage of 120 V. There are 250 windings in the primary coil and 25 windings in the secondary coil. Calculate the voltage in the secondary coil.

A step-down transformer used in the adapter for a cellphone charger has a primary voltage of 120 V and a secondary voltage of 5.0 V. The current in the primary coil is 0.10 A. Calculate the current in the secondary coil.

SPH3U 13.6 Power Plants and the Electrical Grid

7. Transmission efficiency

Power loss:	
equation	
efficiency	

A generator produces 300 MW (3 x 10^8 W) of power at a current of 30 kA and a voltage of 10 kV. That power travels through a transmission wire with a resistance of 0.1 Ω . How much power is lost (in MW and in % of the total)?

Now a step-up transformer is used to increase the voltage to 100 kV before sending it over the wire. This lowers the current to 3 kA ($V_PI_P = V_SI_S$). What is the new power loss?

8. The power grid

Homework: page 612: #1-2