## SPH3U 11.1 Electrical Energy and Power Plants

## 1. Electrical power

Electricity:
Electrical power:
equation

Calculate the power to charge a cellphone if 740 J of energy is transferred in 1.0 min .

Kilowatt hour:

Calculate the energy needed by a 35 W halogen light bulb that operates for 240 h . Give your answer in both joules and kilowatt hours.

Homework: page 507: \#2-4

## SPH3U 11.3 Electric Potential Difference

## 1. Electric potential difference

| Electric |  |
| :--- | :--- |
| potential: |  |
| Electric potential |  |
| difference: |  |
| equation |  |
| Quantity of |  |
| electrons: |  |

Calculate the electric potential difference between the negative and positive terminals of a battery if 1500 J of electric potential energy is transformed to move 125 C of charge between the terminals.

## 2. Series and parallel circuits



| Part of circuit | Circuit symbol | resistor | $\sim$ | motor | - M |
| :---: | :---: | :---: | :---: | :---: | :---: |
| battery | $+1$. |  |  |  |  |
|  | $\bigcirc$ | lamp |  | open switch | $\rightarrow 0$ |
| variable DC power supply |  | connecting wire | - | closed switch |  |

Homework: page 513: \#1-5, 7

## SPH3U 11.5 Electric Current

## 1. Electric current

Electric current: equation
Direct current
(DC):

Alternating current (AC):

Calculate the amount of current through a wire that has 0.85 C of electrons passing a point in 2.5 min .

Effects of current
on your body:

Ammeter

## SPH3U 11.6 Kirchhoff's Laws

## 1. Kirchhoff's Laws

| Kirchhoff's Voltage <br> Law (KVL): |  |
| :--- | :--- |
| series |  |
| parallel |  |

Kirchoff's Current
Law (KCL):
series
parallel

If a 6.0 V battery with 0.20 A of current is connected to three identical light bulbs in series, what is the voltage and current of each light bulb?


If a 6.0 V battery with 0.30 A of current is connected to three identical light bulbs $\underline{\text { in }}$ parallel, what is the voltage and current of each light bulb?


Analyze this mixed circuit. Find each unknown voltage and current, given the following information: $\mathrm{V}_{\text {source }}=40 \mathrm{~V}, \mathrm{~V}_{1}=10 \mathrm{~V}, \mathrm{~V}_{3}=20 \mathrm{~V}$; $\mathrm{I}_{\text {source }}=0.40 \mathrm{~A}, \mathrm{I}_{3}=0.10 \mathrm{~A}$.


## SPH3U 11.7 Electrical Resistance

## 2. Electrical resistance

| Electrical <br> resistance: |  |
| :--- | :--- |
| Resistor: |  |
| Ohm's Law: |  |
| equation |  |

Calculate the resistance of a load with a voltage of 25 V and a current of 410 mA .

Ohmmeter:

Homework: page 526: \#2-6, 12

## SPH3U 11.8 Resistors in Circuits

## 3. Series and parallel

Equivalent
resistance:

| Series: |  |
| :---: | :--- |
| equation |  |

Four resistors are connected in series in a circuit. The resistances are as follows: $\mathrm{R}_{1}=41 \Omega$, $\mathrm{R}_{2}=51.75 \Omega, \mathrm{R}_{3}=11.1 \Omega, \mathrm{R}_{4}=102.008 \Omega$. Calculate the equivalent resistance.

Parallel:
equation

Three resistors are connected in parallel in a circuit. The resistances are as follows: $\mathrm{R}_{1}=15$ $\Omega, \mathrm{R}_{2}=12 \Omega, \mathrm{R}_{3}=10 \Omega$. Calculate the equivalent resistance.

## 4. Mixed circuits

Calculate the equivalent resistance for the circuit shown.


## SPH3U 11.9 Circuit Analysis

## 1. Circuit analysis when resistance values are given

The circuit below has a source voltage of 12.0 V and resistance values of $\mathrm{R}_{1}=15.0 \Omega, \mathrm{R}_{2}=$ $25.0 \Omega, R_{3}=35.0 \Omega$. Find values for $I_{\text {source }} I_{1}, I_{2}, I_{3}, V_{1}, V_{2}, V_{3}$, and $R_{\text {total }}$.


## 2. Circuit analysis when only some resistance values are given

The circuit below has a $\mathrm{V}_{\text {source }}=12.0 \mathrm{~V}, \mathrm{I}_{1}=0.50 \mathrm{~A}, \mathrm{~V}_{3}=2.5 \mathrm{~V}, \mathrm{~V}_{4}=5.0 \mathrm{~V}$, and $\mathrm{R}_{3}=10.0 \Omega$. Find values for $I_{\text {source }} I_{2}, I_{3}, I_{4}, V_{1}, V_{2}, R_{1}, R_{2}, R_{4}$, and $R_{\text {total }}$.


Homework: page 535: \#1-4

## SPH3U 12.1 Magnetic Fields

## 5. Magnetic fields

| Magnets: |  |
| :---: | :--- |
| Magnetic <br> field: |  |
| direction |  |
|  |  |
| magnetic <br> field lines |  |



Draw a bar magnet (north and south poles) and its magnetic field lines, including compass indications of the direction of the field at various points.

## Homework: page 552: \#5-6 <br> SPH3U 12.2 Oersted's Discovery

## 6. Oersted's principle

Oersted's
principle:
Right-hand
rule:

Right-Hand Rule for a Straight Conductor
If your right thumb is pointing in the direction of conventional current, and you curl your fingers forward, your curled fingers point in the direction of the magnetic field lines.


Current into
/out of page:

Conventional current:

Electron flow
model:

Draw the magnetic field for each diagram.


Draw the direction of the conventional current for each diagram.




WE WERE GOING TO USE THE TIME MACHINE TO PREVENT THE ROBOT APOCALYPSE, BUT THE GUY WHO BUILT IT WAS AN ELECTRICAL ENGINEER.

## SPH3U 12.4 Solenoids

## 7. Interacting magnetic fields

Magnetic fields
interacting:
example


## 8. Solenoids

Coiled conductors:

## Electromagnet:

Solenoid:

(b)

Right-hand rule \#2:

## Right-Hand Rule for a Solenoid

If you coil the fingers of your right hand around a solenoid in the direction of the conventional current, your thumb points in the direction of the magnetic field lines in the centre of the coil.


Draw the magnetic field lines and/or the direction of conventional current for each:


(b)

(c)

(d)

## SPH3U 12.5 The Motor Principle

## 9. The motor principle

Faraday's experiment:


The motor principle:

Right-hand rule \#3:

Right-Hand Rule for a Moving Charge in a Magnetic Field
If you point your right thumb in the direction of the velocity of the charge $(\vec{V})$, and your straight fingers in the direction of the magnetic field $(\vec{B})$, then your palm will point in the direction of the resulting magnetic force $\left(\vec{F}_{\mathrm{M}}\right)$.


Draw the magnetic field lines of both the magnet and the conductor. Then determine the direction of the force on the conductor.

(a)

(b)

(c)

## 10.The analog meter

The
galvanometer:


Ammeter:
Voltmeter:


## SPH3U 13.1 Electromagnetic Induction

## 11.Discovery

Induction:
Chapter 12:
Chapter 13:
stationary magnet
moving magnet
Law of
electromagnetic
induction:

Faraday's
ring:


## 12.Factors affecting induction

Coiled conductor:
Number of loops:
Change in magnetic field:
Magnetic field strength:

## 13.Applications of electromagnetic induction

Induction cooking:
Metal detectors:
Induction chargers:
Homework: page 591: \#2-3

## SPH3U 13.2 Lenz's Law

## 1. Direction of induced current

Lenz's question:


Newton's 3 ${ }^{\text {rd }}$ law:
applied to induced currents

Lenz's Law:


## 2. Drop-tower rides

Drop-tower rides:
brakes
solution

## SPH3U 13.3 Alternating Current

## 3. Alternating current

| Continuous <br> current: <br> solution |  |
| :---: | :--- |
| Alternating <br> current: |  |
| DC vs. AC: |  |
| Canada's <br> electricity: |  |
| RMS voltage: |  |



Homework: page 598: \#1-2,5

## SPH3U 13.4 Electricity Generation

## 4. The AC generator

## Design:



## 5. The DC generator

Design:


## SPH3U 13.5 Transformers

## 6. How transformers work

$\left.\begin{array}{|l|l|l|}\hline \text { Transformer: } & \\ \text { AC } \\ \text { how it } \\ \text { works }\end{array}\right]$

A step-down transformer used in an adapter for a laptop has a primary voltage of 120 V . There are 250 windings in the primary coil and 25 windings in the secondary coil. Calculate the voltage in the secondary coil.

A step-down transformer used in the adapter for a cellphone charger has a primary voltage of 120 V and a secondary voltage of 5.0 V . The current in the primary coil is 0.10 A . Calculate the current in the secondary coil.

## SPH3U 13.6 Power Plants and the Electrical Grid

## 7. Transmission efficiency

| Power loss: |  |
| :---: | :--- |
| equation |  |
| efficiency |  |

A generator produces $300 \mathrm{MW}\left(3 \times 10^{8} \mathrm{~W}\right)$ of power at a current of 30 kA and a voltage of 10 kV . That power travels through a transmission wire with a resistance of $0.1 \Omega$. How much power is lost (in MW and in \% of the total)?

Now a step-up transformer is used to increase the voltage to 100 kV before sending it over the wire. This lowers the current to $3 \mathrm{kA}\left(\mathrm{V}_{\mathrm{PI}} \mathrm{F}=\mathrm{VSIs}\right)$. What is the new power loss?
8. The power grid


AC
generators:

Homework: page 612: \#1-2

