

Exponent Laws

We can use exponent laws to simplify expressions involving powers with the same base.

product	expanded form	single power
$3^2 \times 3^4$	$(3\times3)\times(3\times3\times3\times3)$	36
$4^3 \times 4^3$		
$6^4 \times 6$		
$2^4 \times 2^2 \times 2^3$		
$k^3 \times k^5$		

Can we come up with an example using fractions as a base? Or negative numbers?

This first rule is called the PRODUCT RULE:

When multiplying powers with the same base, add the exponents.

Ex. Write each as a single power.

a)
$$3^2 \times 3^3$$

b)
$$5^2 \times 5 \times 5^2$$

a)
$$3^2 \times 3^3$$
 b) $5^2 \times 5 \times 5^2$ c) $(-2)^4 \times (-2)^3$

d)
$$\left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^2$$
 e) $0.1^4 \times 0.1^2$ f) $4^6 \left(4^5\right)$

e)
$$0.1^4 \times 0.1^2$$

f)
$$4^6 (4^5)$$

The second exponent rule is called the **QUOTIENT RULE**:

quotient	expanded form	single power
$5^5 \div 5^3$	$\frac{5 \times 5 \times 5 \times 5}{5 \times 5 \times 5}$	5 ²
$\frac{7^4}{7}$		
$p^8 \div p^5$		

The quotient rule: when dividing powers with the same base, subtract the exponents. Ex. Write each as a single power.

a)
$$8^7 \div 8^5$$

b)
$$4^7 \div 4 \div 4^3$$

c)
$$\frac{\left(-0.5\right)^6}{\left(-0.5\right)^3}$$

$$\frac{d) \left(\frac{3}{4}\right)^4 \times \left(\frac{3}{4}\right)^2}{\left(\frac{3}{4}\right)^5}$$

5 What goes in the ☐ to complete the equation below?

$$(8x^3)(\square) = 24x^{12}$$

- A $3x^9$
- **B** $3x^4$
- C $16x^9$
- **D** $16x^4$

What exponent goes in the box to make the following equation true?

$$\frac{x\Box x^6}{x^2}=x^{12}$$

- **a** 9
- h 8
- **c** 4
- **d** 3
- What value of *m* makes the equation $\frac{6a^m}{2a^3} = 3a^5 \text{ true?}$
 - a 2
 - b 8
 - c 15
 - **d** 18

Remember to visit www.eqao.com for past tests.

February 05, 2017

Homework, page 126,#1, 2, 3, 4, 9ad